A novel mode of Capping Protein-regulation by Twinfilin

  1. Adam B Johnston
  2. Denise M Hilton
  3. Patrick McConnell
  4. Britney Johnson
  5. Meghan T Harris
  6. Avital Simone
  7. Gaya K Amarasinghe
  8. John A Cooper
  9. Bruce L Goode  Is a corresponding author
  1. Brandeis University, United States
  2. Washington University in St Louis, United States

Abstract

Cellular actin assembly is controlled at the barbed ends of actin filaments, where capping protein (CP) limits polymerization. Twinfilin is a conserved in vivo binding partner of CP, yet the significance of this interaction has remained a mystery. Here, we discover that the C-terminal tail of Twinfilin harbors a CP-interacting (CPI) motif, identifying it as a novel CPI-motif protein. Twinfilin and the CPI-motif protein CARMIL have overlapping binding sites on CP. Further, Twinfilin binds competitively with CARMIL to CP, protecting CP from barbed-end displacement by CARMIL. Twinfilin also accelerates dissociation of the CP inhibitor V-1, restoring CP to an active capping state. Knockdowns of Twinfilin and CP each cause similar defects in cell morphology, and elevated Twinfilin expression rescues defects caused by CARMIL hyperactivity. Together, these observations define Twinfilin as the first 'pro-capping' ligand of CP and lead us to propose important revisions to our understanding of the CP regulatory cycle.

Data availability

All datasets associated with this article are included in the manuscript and supporting files.

Article and author information

Author details

  1. Adam B Johnston

    Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Denise M Hilton

    Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1577-1855
  3. Patrick McConnell

    Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Britney Johnson

    Department of Pathology and Immunology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Meghan T Harris

    Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Avital Simone

    Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Gaya K Amarasinghe

    Department of Pathology and Immunology, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. John A Cooper

    Department of Biochemistry and Molecular Biophysics, Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0933-4571
  9. Bruce L Goode

    Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, United States
    For correspondence
    goode@brandeis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6443-5893

Funding

National Institutes of Health (R01 GM063691)

  • Bruce L Goode

Defense Threat Reduction Agency (HDTRA1-16-1-0033)

  • Gaya K Amarasinghe

National Institutes of Health (R35 GM118171)

  • John A Cooper

National Science Foundation (MRSEC DMR-1420382)

  • Bruce L Goode

National Institutes of Health (P01 AI120943)

  • Gaya K Amarasinghe

National Institutes of Health (R01 AI123926)

  • Gaya K Amarasinghe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Anna Akhmanova, Utrecht University, Netherlands

Version history

  1. Received: August 21, 2018
  2. Accepted: October 22, 2018
  3. Accepted Manuscript published: October 23, 2018 (version 1)
  4. Version of Record published: November 21, 2018 (version 2)

Copyright

© 2018, Johnston et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,540
    views
  • 373
    downloads
  • 38
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Adam B Johnston
  2. Denise M Hilton
  3. Patrick McConnell
  4. Britney Johnson
  5. Meghan T Harris
  6. Avital Simone
  7. Gaya K Amarasinghe
  8. John A Cooper
  9. Bruce L Goode
(2018)
A novel mode of Capping Protein-regulation by Twinfilin
eLife 7:e41313.
https://doi.org/10.7554/eLife.41313

Share this article

https://doi.org/10.7554/eLife.41313

Further reading

    1. Cell Biology
    Yuki Date, Yukiko Sasazawa ... Shinji Saiki
    Research Article Updated

    The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson’s disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.

    1. Cancer Biology
    2. Cell Biology
    Savvas Nikolaou, Amelie Juin ... Laura M Machesky
    Research Article Updated

    Pancreatic ductal adenocarcinoma carries a dismal prognosis, with high rates of metastasis and few treatment options. Hyperactivation of KRAS in almost all tumours drives RAC1 activation, conferring enhanced migratory and proliferative capacity as well as macropinocytosis. Macropinocytosis is well understood as a nutrient scavenging mechanism, but little is known about its functions in trafficking of signalling receptors. We find that CYRI-B is highly expressed in pancreatic tumours in a mouse model of KRAS and p53-driven pancreatic cancer. Deletion of Cyrib (the gene encoding CYRI-B protein) accelerates tumourigenesis, leading to enhanced ERK and JNK-induced proliferation in precancerous lesions, indicating a potential role as a buffer of RAC1 hyperactivation in early stages. However, as disease progresses, loss of CYRI-B inhibits metastasis. CYRI-B depleted tumour cells show reduced chemotactic responses to lysophosphatidic acid, a major driver of tumour spread, due to impaired macropinocytic uptake of the lysophosphatidic acid receptor 1. Overall, we implicate CYRI-B as a mediator of growth and signalling in pancreatic cancer, providing new insights into pathways controlling metastasis.