Ephrin-B3 controls excitatory synapse density through cell-cell competition for EphBs

  1. Nathan T Henderson
  2. Sylvain J Le Marchand
  3. Martin Hruska
  4. Simon Hippenmeyer
  5. Liqun Luo
  6. Matthew B Dalva  Is a corresponding author
  1. Thomas Jefferson University, United States
  2. University of Pennsylvania, United States
  3. University of Delaware, United States
  4. Institute of Science and Technology Austria, Austria
  5. Howard Hughes Medical Institute, Stanford University, United States
9 figures, 1 table and 1 additional file

Figures

Figure 1 with 1 supplement
Knockdown of ephrin-B3 does not alter synapse density in single-neuron microislands.

(a and b) Representative images of dendrites from single-neuron microislands transduced with control (pSuper) and eB3 shRNA viruses and immunostained at DIV21 for vGlut1 and PSD-95. Scale bar, 20 …

https://doi.org/10.7554/eLife.41563.002
Figure 1—source data 1

Knockdown of ephrin-B3 does not alter synapse density in single-neuron microislands.

https://doi.org/10.7554/eLife.41563.003
Figure 1—figure supplement 1
Schematic of microisland experimental design.

(a) Single-neuron microislands provide a system devoid of potential competitive interactions. Blue dots represent endogenous PSD-95, green dots represent PSD-95-GFP (b) Two-neurons microislands …

https://doi.org/10.7554/eLife.41563.004
PSD-95-GFP localizes to synapses and does not alter synapse density.

(a and b) Representative images of single-neuron microislands transfected with the indicated constructs and immunostained for GFP (for PSD-95-GFP), PSD-95 and vGlut1. Boxed regions are shown in …

https://doi.org/10.7554/eLife.41563.005
Figure 2—source data 1

PSD-95-GFP localizes to synapses and does not alter synapse density.

https://doi.org/10.7554/eLife.41563.006
Synapse density is regulated by an ephrin-B3-dependent competitive mechanism.

(a) Representative images of control and competitive doublets. Neurons were immunostained for vGlut1, PSD-95 and GFP (for PSD-95-GFP) at DIV21. Arrows indicate untransfected (white arrow) and …

https://doi.org/10.7554/eLife.41563.007
Figure 3—source data 1

Synapse density is regulated by a competitive mechanism.

https://doi.org/10.7554/eLife.41563.008
Figure 4 with 2 supplements
Effects of ephrin-B3 knockdown are rescued by unclustered EphB2 ectodomain treatment.

(a) DIV10 cortical neurons transfected with the indicated constructs along with GFP and treated with unclustered EphB2 ectodomain (EphB2-ecto). Arrowheads indicate colocalized PSD-95 (red) and …

https://doi.org/10.7554/eLife.41563.009
Figure 4—source data 1

Effects of ephrin-B3 knockdown are rescued byEphB2 ectodomain.

https://doi.org/10.7554/eLife.41563.010
Figure 4—figure supplement 1
Validation of unclustered EphB2 ectodomain treatment method.

(a and b) Representative images of DIV10 cortical neurons transfected with GFP and either pSuper control vector (control) or eB3 shRNA and treated with 500 ng/ul (250 ng/well) EphB2 ectodomain …

https://doi.org/10.7554/eLife.41563.011
Figure 4—figure supplement 1—source data 1

Validation of EphB2 ectodomain treatment method.

https://doi.org/10.7554/eLife.41563.012
Figure 4—figure supplement 2
Unclustered EphB2 ectodomain blocks competition in microislands.

(a and b) Representative images of control (a) and competitive (b) doublets treated with 500 ng/ml (250 ng/well) of unclustered EphB2 ectodomain. Scale bar, 20 μm. (c) Higher magnification images of …

https://doi.org/10.7554/eLife.41563.013
Figure 4—figure supplement 2—source data 1

EphB2 ectodomain blocks competition in microislands.

https://doi.org/10.7554/eLife.41563.014
Figure 5 with 2 supplements
Efnb3 is expressed in CTIP2 +projection neurons.

(a) Representative cells within WT mouse cortex labeled by RNAscope ISH for CTIP2 mRNA (Bcl11b), SATB2 mRNA (Satb2), and eB3 mRNA (Efnb3). Scale bar, 3 μm. (b) Quantification of the number of …

https://doi.org/10.7554/eLife.41563.015
Figure 5—source data 1

Efnb3 is expressed in CTIP2 +projection neurons.

https://doi.org/10.7554/eLife.41563.016
Figure 5—figure supplement 1
Schematic of recombination in eB3 MADM mice.

(a) Interchromosomal recombination in eB3 MADM mice generates fluorescently labeled cells of known eB3 genotype. Cre-mediated recombination in G2 phase followed by segregation of chromatids into …

https://doi.org/10.7554/eLife.41563.017
Figure 5—figure supplement 2
Controls for RNAscope ISH.

(a) Representative three color RNAscope ISH images from WT and Efnb3-/- mouse cortex, showing reduced eB3 probe signal in CTIP2 + cells (CTIP2 + and CTIP2+/SATB2 + included) within Efnb3-/- cortex. …

https://doi.org/10.7554/eLife.41563.019
Figure 5—figure supplement 2—source data 1

Controls for RNAscope ISH.

https://doi.org/10.7554/eLife.41563.020
Figure 6 with 1 supplement
Relative levels of ephrin-B3 control spine density in vivo.

(a) Representative large diameter (>1.6 μm) dendrites of subgranular pyramidal neurons in control and eB3 Nestin-spCre MADM mice. Scale bar, 3 μm. (b) Representative small diameter (<1.6 μm) …

https://doi.org/10.7554/eLife.41563.021
Figure 6—source data 1

Relative levels of ephrin-B3 control spine density in vivo.

https://doi.org/10.7554/eLife.41563.022
Figure 6—figure supplement 1
Equal spine density in control MADM neurons regardless of fluorophore expressed.

(a) Representative large diameter (>1.6 μm) dendrites of subgranular pyramidal neurons in control Nestin-spCre MADM mice. Scale bar, 3 μm. (b) Quantification of spine density on large diameter …

https://doi.org/10.7554/eLife.41563.023
Figure 6—figure supplement 1—source data 1

Spine density WT MADM neurons.

https://doi.org/10.7554/eLife.41563.024
Use of ephrin-B3 MADM mice to generate heterogenotypic cultures.

(a) Representative image of eB3 MADM (Emx1-Cre line) cortex containing sparse EGFP +and/or tdTomato +expressing cells. Scale bar, 100 μm. (b) Workflow diagram for generating eB3 MADM cultures. (c) …

https://doi.org/10.7554/eLife.41563.025
Ephrin-B3 regulates local cell-cell differences in synapse density in MADM cultures.

(a and b) Representative image fields and corresponding masks used for analysis from control (a) and heterogenotypic (b) DIV11 MADM cultures. Scale bar, 20 μm. (c and d) Scatter plots in which each …

https://doi.org/10.7554/eLife.41563.026
Figure 8—source data 1

Ephrin-B3 regulates local cell-cell differences in synapse density in MADM cultures.

https://doi.org/10.7554/eLife.41563.027
Control of synapse number by ephrin-B3 does not require activity.

(a and b) Representative image fields and corresponding masks used for analysis from control (a) and heterogenotypic (b) DIV11 MADM cultures treated with TTX (1 μm) from DIV3-11. Scale bar, 20 μm. (c…

https://doi.org/10.7554/eLife.41563.028
Figure 9—source data 1

Control of synapse number by ephrin-B3 does not require activity.

https://doi.org/10.7554/eLife.41563.029

Tables

Key resources table
Reagent type
(species) or
resource
DesignationSource or
reference
IdentifiersAdditional
information
Genetic reagent (Mus musculus)ephrin-B3 knockout (and WT littermates)Yokoyama et al., 2001, Hruska et al., 2015, Antion et al., 2010.RRID:MGI:3026744
Genetic reagent (M. musculus)MADM-11 TG, eB3+/MADM-11 TG, eB3- (founder line)This paper.Progenitor: MADM-11 TG/TG (Hippenmeyer et al., 2010), RRID: IMSR_JAX:013749
Genetic reagent (M. musculus)MADM-11 GT/GT; Emx1-CreHippenmeyer et al., 2010, Beattie et al., 2017.Progenitor: IMSR_JAX:005628
Genetic reagent (M. musculus)MADM-11 GT/GT; Nestin-spCreHippenmeyer et al., 2010.
Strain, strain background (Rattus norvegicus domesticus)Long Evans RatCharles RiverStrain code: 006: RRID:RGD_2308852
AantibodyRabbit polyclonal anti-GFPThermo Fisher ScientificA6455, RRID:AB_221570(1:2500)
AantibodyMouse monoclonal anti-PSD-95NeuroMab (clone 28/43)Cat. # 75–028, RRID:AB_2292909(1:500)
AntibodyGuinea pig polyclonal anti-vGlut1MilliporeCat. #AB5905, RRID:AB_2301751(1:5000)
AntibodyRabbit polyclonal anti-RFPRockland antibodiesCat. # 600-401-379, RRID:AB_2209751(1:500)
AntibodyChicken polyclonal anti-GFPAbcamCat. # ab13970, RRID:AB_300798(1:500)
AntibodyRat monoclonal anti-CTIP2AbcamCat. # ab18465, RRID:AB_10015215(1:500)
AntibodyMouse monoclonal anti-SATB2AbcamCat. # ab51502, RRID:AB_882455(1:500)
AntibodyDonkey polyclonal anti-rabbit Dylight 488AbcamCat. # ab96919, RRID:AB_10679362(1:500)
AntibodyDonkey polyclonal anti-chicken Dylight 488Jackson ImmunoresearchCat. # ab96947, RRID:AB_10681017(1:500)
AntibodyDonkey polyclonal anti-rabbit Alexafluor 594Jackson ImmunoresearchCat. # 711-585-152, RRID:AB_2340621(1:500)
AntibodyDonkey polyclonal anti-rat 647Jackson ImmunoresearchCat. # 712-605-153, RRID:AB_2340694(1:500)
AntibodyGoat polyclonal anti-mouse ATTO 425Rockland antibodiesCat. # 611-151-122, RRID:AB_10893217(1:250)
AntibodyDonkey polyclonal anti-guinea pig Dylight 649Jackson ImmunoresearchCat. # 706-605-148, RRID:AB_2340476(1:500)
Recombinant DNA reagentpFUGW-tdTomato_H1-eB3.2 (plasmid)Hruska et al., 2015.Progenitor: pFUGW (RRID:Addgene_14883); pSuper.
Recombinant DNA reagentpFUGW-tdTomato_H1-pSuper (plasmid)Hruska et al., 2015.Progenitor: pFUGW (RRID:Addgene_14883), pSuper.
Recombinant DNA reagentpSuper (plasmid)Hruska et al., 2015, McClelland et al., 2010.
Recombinant DNA reagenteB3.2 shRNA (plasmid)Hruska et al., 2015, McClelland et al., 2010.pSuper
Recombinant DNA reagentpFUGW (plasmid)Hruska et al., 2015, McClelland et al., 2010.RRID:Addgene_14883
Recombinant DNA reagentpLL3.7 (plasmid)AddgeneRRID:Addgene_11795
Recombinant DNA reagentephrin-B3 shRNA lentivirusPenn Vector Core (University of Pennsylvania)Progenitor: pLL3.7 vector (RRID:Addgene_11795)
Peptide, recombinant proteinRecombinant human EphB2 Fc chimeraR and D systemsCat. # 5189-B2
Peptide, recombinant proteinRecombinant Fc control fragmentR and D systems110-HG-100
Commercial assay or kitRNAscope fluorescent multiplex kitAdvanced Cell Diagnostics320850
Commercial assay or kitRNAscope probe- Mm-Bcl11b (CTIP2)Advanced Cell DiagnosticsCat. # 413271-C3
Commercial assay or kitRNAscope probe- Mm-Satb2-C2Advanced Cell DiagnosticsCat. # 413261-C2
Commercial assay or kitRNAscope probe- Mm-Efnb3Advanced Cell DiagnosticsCat. # 526771
Chemical compound, drugTetrodotoxin (TTX)TocrisCat. #1078
Software, algorithmNIH ImageJMcClelland et al., 2009, Hruska et al., 2015.RRID:SCR_003070

Additional files

Download links