Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing

Abstract

Information processing by cerebellar molecular layer interneurons (MLIs) plays a crucial role in motor behavior. MLI recruitment is tightly controlled by the profile of short-term plasticity (STP) at granule cell (GC)-MLI synapses. While GCs are the most numerous neurons in the brain, STP diversity at GC-MLI synapses is poorly documented. Here, we studied how single MLIs are recruited by their distinct GC inputs during burst firing. Using slice recordings at individual GC-MLI synapses of mice, we revealed four classes of connections segregated by their STP profile. Each class differentially drives MLI recruitment. We show that GC synaptic diversity is underlain by heterogeneous expression of synapsin II, a key actor of STP and that GC terminals devoid of synapsin II are associated with slow MLI recruitment. Our study reveals that molecular, structural and functional diversity across GC terminals provides a mechanism to expand the coding range of MLIs.

Article and author information

Author details

  1. Kevin Dorgans

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1724-6384
  2. Valérie Demais

    UPS 3256 Plateforme Imagerie in vitro, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Yannick Bailly

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Bernard Poulain

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2601-5310
  5. Philippe Isope

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0630-5935
  6. Frédéric Doussau

    Institut des Neurosciences Cellulaires et Intégratives, CNRS, Strasbourg, France
    For correspondence
    doussau@inci-cnrs.unistra.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3769-1402

Funding

Agence Nationale de la Recherche (ANR-2015CeMod)

  • Philippe Isope

Fondation pour la Recherche Médicale (DEQ20140329514)

  • Philippe Isope

Ministère de l'Education Nationale, de l'Enseignement Superieur et de la Recherche

  • Kevin Dorgans

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was carried out in strict accordance with the national and international laws for laboratory animal welfare and experimentation and was approved in advance by the Ethics Committee of Strasbourg (CREMEAS; CEEA35; agreement number/reference protocol: APAFIS#4354-20 16030212155187 v3).

Reviewing Editor

  1. Indira M Raman, Northwestern University, United States

Publication history

  1. Received: September 11, 2018
  2. Accepted: May 11, 2019
  3. Accepted Manuscript published: May 13, 2019 (version 1)
  4. Version of Record published: May 23, 2019 (version 2)

Copyright

© 2019, Dorgans et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,077
    Page views
  • 367
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin Dorgans
  2. Valérie Demais
  3. Yannick Bailly
  4. Bernard Poulain
  5. Philippe Isope
  6. Frédéric Doussau
(2019)
Short-term plasticity at cerebellar granule cell to molecular layer interneuron synapses expands information processing
eLife 8:e41586.
https://doi.org/10.7554/eLife.41586

Further reading

    1. Developmental Biology
    2. Neuroscience
    Kenneth Kin Lam Wong, Tongchao Li ... Liqun Luo
    Research Article

    How does wiring specificity of neural maps emerge during development? Formation of the adult Drosophila olfactory glomerular map begins with patterning of projection neuron (PN) dendrites at the early pupal stage. To better understand the origin of wiring specificity of this map, we created genetic tools to systematically characterize dendrite patterning across development at PN type-specific resolution. We find that PNs use lineage and birth order combinatorially to build the initial dendritic map. Specifically, birth order directs dendrite targeting in rotating and binary manners for PNs of the anterodorsal and lateral lineages, respectively. Two-photon- and adaptive optical lattice light-sheet microscope-based time-lapse imaging reveals that PN dendrites initiate active targeting with direction-dependent branch stabilization on the timescale of seconds. Moreover, PNs that are used in both the larval and adult olfactory circuits prune their larval-specific dendrites and re-extend new dendrites simultaneously to facilitate timely olfactory map organization. Our work highlights the power and necessity of type-specific neuronal access and time-lapse imaging in identifying wiring mechanisms that underlie complex patterns of functional neural maps.

    1. Neuroscience
    Benjamin D Pedigo, Mike Powell ... Joshua T Vogelstein
    Research Article

    Comparing connectomes can help explain how neural connectivity is related to genetics, disease, development, learning, and behavior. However, making statistical inferences about the significance and nature of differences between two networks is an open problem, and such analysis has not been extensively applied to nanoscale connectomes. Here, we investigate this problem via a case study on the bilateral symmetry of a larval Drosophila brain connectome. We translate notions of'bilateral symmetry' to generative models of the network structure of the left and right hemispheres, allowing us to test and refine our understanding of symmetry. We find significant differences in connection probabilities both across the entire left and right networks and between specific cell types. By rescaling connection probabilities or removing certain edges based on weight, we also present adjusted definitions of bilateral symmetry exhibited by this connectome. This work shows how statistical inferences from networks can inform the study of connectomes, facilitating future comparisons of neural structures.