1. Stem Cells and Regenerative Medicine
Download icon

Stem cells repurpose proliferation to contain a breach in their niche barrier

  1. Kenneth Lay
  2. Shaopeng Yuan
  3. Shiri Gur-Cohen
  4. Yuxuan Miao
  5. Tianxiao Han
  6. Shruti Naik
  7. H Amalia Pasolli
  8. Samantha B Larsen
  9. Elaine Fuchs  Is a corresponding author
  1. Howard Hughes Medical Institute, The Rockefeller University, United States
  2. Janelia Research Campus, Howard Hughes Medical Institute, United States
Research Article
  • Cited 19
  • Views 4,197
  • Annotations
Cite this article as: eLife 2018;7:e41661 doi: 10.7554/eLife.41661

Abstract

Adult stem cells are responsible for life-long tissue maintenance. They reside in and interact with specialized tissue microenvironments (niches). Using murine hair follicle as a model, we show that when junctional perturbations in the niche disrupt barrier function, adjacent stem cells dramatically change their transcriptome independent of bacterial invasion and become capable of directly signaling to and recruiting immune cells. Additionally, these stem cells elevate cell cycle transcripts which reduce their quiescence threshold, enabling them to selectively proliferate within this microenvironment of immune distress cues. However, rather than mobilizing to fuel new tissue regeneration, these ectopically proliferative stem cells remain within their niche to contain the breach. Together, our findings expose a potential communication relay system that operates from the niche to the stem cells to the immune system and back. The repurposing of proliferation by these stem cells patch the breached barrier, stoke the immune response and restore niche integrity.

Data availability

RNA-sequencing data have been deposited in GEO under accession number GSE106767

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Kenneth Lay

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  2. Shaopeng Yuan

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9554-1325
  3. Shiri Gur-Cohen

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  4. Yuxuan Miao

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  5. Tianxiao Han

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  6. Shruti Naik

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  7. H Amalia Pasolli

    Electron Microscopy Shared Resource, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  8. Samantha B Larsen

    Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    Competing interests
    No competing interests declared.
  9. Elaine Fuchs

    Robin Neustein Laboratory of Mammalian Development and Cell Biology, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
    For correspondence
    elaine.fuchs@rockefeller.edu
    Competing interests
    Elaine Fuchs, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0978-5137

Funding

National Institutes of Health

  • Elaine Fuchs

L'Oreal USA

  • Shruti Naik

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All mice were maintained in a facility approved by The Association for Assessment and Accreditation of Laboratory Animal Care (AAALAC), and procedures were performed with protocols approved by Rockefeller University's institutional animal care and use committee (IACUC) members.

Reviewing Editor

  1. Valerie Horsley, Yale University, United States

Publication history

  1. Received: September 2, 2018
  2. Accepted: November 29, 2018
  3. Accepted Manuscript published: December 6, 2018 (version 1)
  4. Version of Record published: January 8, 2019 (version 2)

Copyright

© 2018, Lay et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,197
    Page views
  • 710
    Downloads
  • 19
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Stem Cells and Regenerative Medicine
    Diptiman Chanda et al.
    Short Report

    Multicellular organisms maintain structure and function of tissues/organs through emergent, self-organizing behavior. In this report, we demonstrate a critical role for lung mesenchymal stromal cell (L-MSC) aging in determining the capacity to form three-dimensional organoids or ‘alveolospheres’ with type 2 alveolar epithelial cells (AEC2s). In contrast to L-MSCs from aged mice, young L-MSCs support the efficient formation of alveolospheres when co-cultured with young or aged AEC2s. Aged L-MSCs demonstrated features of cellular senescence, altered bioenergetics, and a senescence-associated secretory profile (SASP). The reactive oxygen species generating enzyme, NADPH oxidase 4 (Nox4), was highly activated in aged L-MSCs and Nox4 downregulation was sufficient to, at least partially, reverse this age-related energy deficit, while restoring the self-organizing capacity of alveolospheres. Together, these data indicate a critical role for cellular bioenergetics and redox homeostasis in an organoid model of self-organization and support the concept of thermodynamic entropy in aging biology.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Arantxa Cebrian-Silla et al.
    Research Article Updated

    The ventricular-subventricular zone (V-SVZ), on the walls of the lateral ventricles, harbors the largest neurogenic niche in the adult mouse brain. Previous work has shown that neural stem/progenitor cells (NSPCs) in different locations within the V-SVZ produce different subtypes of new neurons for the olfactory bulb. The molecular signatures that underlie this regional heterogeneity remain largely unknown. Here, we present a single-cell RNA-sequencing dataset of the adult mouse V-SVZ revealing two populations of NSPCs that reside in largely non-overlapping domains in either the dorsal or ventral V-SVZ. These regional differences in gene expression were further validated using a single-nucleus RNA-sequencing reference dataset of regionally microdissected domains of the V-SVZ and by immunocytochemistry and RNAscope localization. We also identify two subpopulations of young neurons that have gene expression profiles consistent with a dorsal or ventral origin. Interestingly, a subset of genes are dynamically expressed, but maintained, in the ventral or dorsal lineages. The study provides novel markers and territories to understand the region-specific regulation of adult neurogenesis.