1. Neuroscience
Download icon

Developmental 'awakening' of primary motor cortex to the sensory consequences of movement

  1. James C Dooley  Is a corresponding author
  2. Mark S Blumberg
  1. University of Iowa, United States
Research Article
  • Cited 11
  • Views 3,134
  • Annotations
Cite this article as: eLife 2018;7:e41841 doi: 10.7554/eLife.41841

Abstract

Before primary motor cortex (M1) develops its motor functions, it functions like a somatosensory area. Here, by recording from neurons in the forelimb representation of M1 in postnatal day (P) 8-12 rats, we demonstrate a rapid shift in its sensory responses. At P8-10, M1 neurons respond overwhelmingly to feedback from sleep-related twitches of the forelimb, but the same neurons do not respond to wake-related movements. By P12, M1 neurons suddenly respond to wake movements, a transition that results from opening the sensory gate in the external cuneate nucleus. Also at P12, fewer M1 neurons respond to individual twitches, but the full complement of twitch-related feedback observed at P8 is unmasked through local disinhibition. Finally, through P12, M1 sensory responses originate in the deep thalamorecipient layers, not primary somatosensory cortex. These findings demonstrate that M1 initially establishes a sensory framework upon which its later-emerging role in motor control is built.

Data availability

Data represented in all figures is summarized in the included tables. Because of the large amount of data in the present publication (over 1,000 neurons across over 50 animals, along with thousands of behaviorally scored twitches and wake movements) our raw data (neural firing timecodes and behavioral event timecodes) have been uploaded to Dryad at DOI: https://doi.org/10.5061/dryad.8231nj1. Custom MATLAB scripts for generating and fitting perievent histograms to twitch and wake movement models can be found on github (https://github.com/jcdooley/Dooley_and_Blumberg_2018).

The following data sets were generated
    1. Dooley J
    2. Blumberg M
    (2018) Data from: Developmental
    Dryad Digital Repository, doi:10.5061/dryad.8231nj1.

Article and author information

Author details

  1. James C Dooley

    Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
    For correspondence
    james-c-dooley@uiowa.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9868-9840
  2. Mark S Blumberg

    Department of Psychological and Brain Sciences, University of Iowa, Iowa City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6969-2955

Funding

National Institutes of Health (R37-HD081168)

  • Mark S Blumberg

National Institutes of Health (F32-NS101858)

  • James C Dooley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were conducted in accordance with the National Institutes of Health (NIH) Guide for the Care and Use of Laboratory Animals (NIH Publication No. 80-23) and were approved by the Institutional Animal Care and Use Committee of the University of Iowa (protocol # 7011955).

Reviewing Editor

  1. John H Martin, CCNY/CUNY School of Medicine, United States

Publication history

  1. Received: September 9, 2018
  2. Accepted: December 19, 2018
  3. Accepted Manuscript published: December 21, 2018 (version 1)
  4. Version of Record published: January 4, 2019 (version 2)

Copyright

© 2018, Dooley & Blumberg

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,134
    Page views
  • 352
    Downloads
  • 11
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Laura Morcom et al.
    Research Article

    The forebrain hemispheres are predominantly separated during embryogenesis by the interhemispheric fissure (IHF). Radial astroglia remodel the IHF to form a continuous substrate between the hemispheres for midline crossing of the corpus callosum (CC) and hippocampal commissure (HC). DCC and NTN1 are molecules that have an evolutionarily conserved function in commissural axon guidance. The CC and HC are absent in Dcc and Ntn1 knockout mice, while other commissures are only partially affected, suggesting an additional aetiology in forebrain commissure formation. Here, we find that these molecules play a critical role in regulating astroglial development and IHF remodelling during CC and HC formation. Human subjects with DCC mutations display disrupted IHF remodelling associated with CC and HC malformations. Thus, axon guidance molecules such as DCC and NTN1 first regulate the formation of a midline substrate for dorsal commissures prior to their role in regulating axonal growth and guidance across it.

    1. Neuroscience
    Kang-Ying Qian et al.
    Research Article Updated

    The development of functional synapses in the nervous system is important for animal physiology and behaviors, and its disturbance has been linked with many neurodevelopmental disorders. The synaptic transmission efficacy can be modulated by the environment to accommodate external changes, which is crucial for animal reproduction and survival. However, the underlying plasticity of synaptic transmission remains poorly understood. Here we show that in Caenorhabditis elegans, the male environment increases the hermaphrodite cholinergic transmission at the neuromuscular junction (NMJ), which alters hermaphrodites’ locomotion velocity and mating efficiency. We identify that the male-specific pheromones mediate this synaptic transmission modulation effect in a developmental stage-dependent manner. Dissection of the sensory circuits reveals that the AWB chemosensory neurons sense those male pheromones and further transduce the information to NMJ using cGMP signaling. Exposure of hermaphrodites to the male pheromones specifically increases the accumulation of presynaptic CaV2 calcium channels and clustering of postsynaptic acetylcholine receptors at cholinergic synapses of NMJ, which potentiates cholinergic synaptic transmission. Thus, our study demonstrates a circuit mechanism for synaptic modulation and behavioral flexibility by sexual dimorphic pheromones.