Vocal and locomotor coordination develops in association with arousal state

  1. Morgan L Gustison
  2. Jeremy I Borjon
  3. Daniel Y Takahashi  Is a corresponding author
  4. Asif A Ghazanfar  Is a corresponding author
  1. Princeton University, United States

Abstract

In adult animals, movement and vocalizations are coordinated, sometimes facilitating, and at other times inhibiting, each other. What is missing is how these different domains of motor control become coordinated over the course of development. We investigated how postural-locomotor behaviors may influence vocal development, and the role played by physiological arousal during their interactions. Using infant marmoset monkeys, we densely sampled vocal, postural and locomotor behaviors and estimated arousal fluctuations from electrocardiographic measures of heart rate. We found that vocalizations matured sooner than postural and locomotor skills, and that vocal-locomotor coordination improved with age and during elevated arousal levels. These results suggest that postural-locomotor maturity is not required for vocal development to occur, and that infants gradually improve coordination between vocalizations and body movement through a process that may be facilitated by arousal level changes.

Data availability

We have uploaded our data to Dryad (doi.org/10.5061/dryad.cp75158).

The following data sets were generated

Article and author information

Author details

  1. Morgan L Gustison

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jeremy I Borjon

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9114-3362
  3. Daniel Y Takahashi

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    takahashiyd@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  4. Asif A Ghazanfar

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    asifg@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1960-7470

Funding

National Institute of Mental Health

  • Morgan L Gustison

National Institute of Neurological Disorders and Stroke

  • Asif A Ghazanfar

National Science Foundation

  • Jeremy I Borjon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1908-18) of Princeton University.

Copyright

© 2019, Gustison et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,212
    views
  • 193
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Morgan L Gustison
  2. Jeremy I Borjon
  3. Daniel Y Takahashi
  4. Asif A Ghazanfar
(2019)
Vocal and locomotor coordination develops in association with arousal state
eLife 8:e41853.
https://doi.org/10.7554/eLife.41853

Share this article

https://doi.org/10.7554/eLife.41853

Further reading

    1. Neuroscience
    William T Redman, Santiago Acosta-Mendoza ... Michael J Goard
    Research Article

    Although grid cells are one of the most well-studied functional classes of neurons in the mammalian brain, whether there is a single orientation and spacing value per grid module has not been carefully tested. We analyze a recent large-scale recording of medial entorhinal cortex to characterize the presence and degree of heterogeneity of grid properties within individual modules. We find evidence for small, but robust, variability and hypothesize that this property of the grid code could enhance the encoding of local spatial information. Performing analysis on synthetic populations of grid cells, where we have complete control over the amount heterogeneity in grid properties, we demonstrate that grid property variability of a similar magnitude to the analyzed data leads to significantly decreased decoding error. This holds even when restricted to activity from a single module. Our results highlight how the heterogeneity of the neural response properties may benefit coding and opens new directions for theoretical and experimental analysis of grid cells.

    1. Neuroscience
    Maren Klingelhöfer-Jens, Katharina Hutterer ... Tina B Lonsdorf
    Research Article

    Childhood adversity is a strong predictor of developing psychopathological conditions. Multiple theories on the mechanisms underlying this association have been suggested which, however, differ in the operationalization of ‘exposure.’ Altered (threat) learning mechanisms represent central mechanisms by which environmental inputs shape emotional and cognitive processes and ultimately behavior. 1402 healthy participants underwent a fear conditioning paradigm (acquisition training, generalization), while acquiring skin conductance responses (SCRs) and ratings (arousal, valence, and contingency). Childhood adversity was operationalized as (1) dichotomization, and following (2) the specificity model, (3) the cumulative risk model, and (4) the dimensional model. Individuals exposed to childhood adversity showed blunted physiological reactivity in SCRs, but not ratings, and reduced CS+/CS- discrimination during both phases, mainly driven by attenuated CS+ responding. The latter was evident across different operationalizations of ‘exposure’ following the different theories. None of the theories tested showed clear explanatory superiority. Notably, a remarkably different pattern of increased responding to the CS- is reported in the literature for anxiety patients, suggesting that individuals exposed to childhood adversity may represent a specific sub-sample. We highlight that theories linking childhood adversity to (vulnerability to) psychopathology need refinement.