Vocal and locomotor coordination develops in association with arousal state
Abstract
In adult animals, movement and vocalizations are coordinated, sometimes facilitating, and at other times inhibiting, each other. What is missing is how these different domains of motor control become coordinated over the course of development. We investigated how postural-locomotor behaviors may influence vocal development, and the role played by physiological arousal during their interactions. Using infant marmoset monkeys, we densely sampled vocal, postural and locomotor behaviors and estimated arousal fluctuations from electrocardiographic measures of heart rate. We found that vocalizations matured sooner than postural and locomotor skills, and that vocal-locomotor coordination improved with age and during elevated arousal levels. These results suggest that postural-locomotor maturity is not required for vocal development to occur, and that infants gradually improve coordination between vocalizations and body movement through a process that may be facilitated by arousal level changes.
Data availability
We have uploaded our data to Dryad (doi.org/10.5061/dryad.cp75158).
-
Data from: Vocal and locomotor coordination develops in association with arousal stateDryad Digital Repository, doi.org/10.5061/dryad.cp75158.
Article and author information
Author details
Funding
National Institute of Mental Health
- Morgan L Gustison
National Institute of Neurological Disorders and Stroke
- Asif A Ghazanfar
National Science Foundation
- Jeremy I Borjon
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#1908-18) of Princeton University.
Copyright
© 2019, Gustison et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,141
- views
-
- 184
- downloads
-
- 15
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
γ-Secretase plays a pivotal role in the central nervous system. Our recent development of genetically encoded Förster resonance energy transfer (FRET)-based biosensors has enabled the spatiotemporal recording of γ-secretase activity on a cell-by-cell basis in live neurons in culture. Nevertheless, how γ-secretase activity is regulated in vivo remains unclear. Here, we employ the near-infrared (NIR) C99 720–670 biosensor and NIR confocal microscopy to quantitatively record γ-secretase activity in individual neurons in living mouse brains. Intriguingly, we uncovered that γ-secretase activity may influence the activity of γ-secretase in neighboring neurons, suggesting a potential ‘cell non-autonomous’ regulation of γ-secretase in mouse brains. Given that γ-secretase plays critical roles in important biological events and various diseases, our new assay in vivo would become a new platform that enables dissecting the essential roles of γ-secretase in normal health and diseases.
-
- Neuroscience
Sensory signals from the body’s visceral organs (e.g. the heart) can robustly influence the perception of exteroceptive sensations. This interoceptive–exteroceptive interaction has been argued to underlie self-awareness by situating one’s perceptual awareness of exteroceptive stimuli in the context of one’s internal state, but studies probing cardiac influences on visual awareness have yielded conflicting findings. In this study, we presented separate grating stimuli to each of subjects’ eyes as in a classic binocular rivalry paradigm – measuring the duration for which each stimulus dominates in perception. However, we caused the gratings to ‘pulse’ at specific times relative to subjects’ real-time electrocardiogram, manipulating whether pulses occurred during cardiac systole, when baroreceptors signal to the brain that the heart has contracted, or in diastole when baroreceptors are silent. The influential ‘Baroreceptor Hypothesis’ predicts the effect of baroreceptive input on visual perception should be uniformly suppressive. In contrast, we observed that dominance durations increased for systole-entrained stimuli, inconsistent with the Baroreceptor Hypothesis. Furthermore, we show that this cardiac-dependent rivalry effect is preserved in subjects who are at-chance discriminating between systole-entrained and diastole-presented stimuli in a separate interoceptive awareness task, suggesting that our results are not dependent on conscious access to heartbeat sensations.