1. Neuroscience
Download icon

Motor context dominates output from Purkinje cell functional regions during reflexive visuomotor behaviours

  1. Laura D Knogler
  2. Andreas M Kist
  3. Ruben Portugues  Is a corresponding author
  1. Max Planck Institute of Neurobiology, Germany
Research Article
  • Cited 6
  • Views 3,017
  • Annotations
Cite this article as: eLife 2019;8:e42138 doi: 10.7554/eLife.42138

Abstract

The cerebellum integrates sensory stimuli and motor actions to enable smooth coordination and motor learning. Here we harness the innate behavioral repertoire of the larval zebrafish to characterize the spatiotemporal dynamics of feature coding across the entire Purkinje cell population during visual stimuli and the reflexive behaviors that they elicit. Population imaging reveals three spatially-clustered regions of Purkinje cell activity along the rostrocaudal axis. Complementary single-cell electrophysiological recordings assign these Purkinje cells to one of three functional phenotypes that encode a specific visual, and not motor, signal via complex spikes. In contrast, simple spike output of most Purkinje cells is strongly driven by motor-related tail and eye signals. Interactions between complex and simple spikes show heterogeneous modulation patterns across different Purkinje cells, which become temporally restricted during swimming episodes. Our findings reveal how sensorimotor information is encoded by individual Purkinje cells and organized into behavioral modules across the entire cerebellum.

Article and author information

Author details

  1. Laura D Knogler

    Research Group of Sensorimotor Control, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Andreas M Kist

    Research Group of Sensorimotor Control, Max Planck Institute of Neurobiology, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Ruben Portugues

    Research Group of Sensorimotor Control, Max Planck Institute of Neurobiology, Martinsried, Germany
    For correspondence
    rportugues@neuro.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1495-9314

Funding

Alexander von Humboldt-Stiftung

  • Laura D Knogler

Carl von Siemens Foundation

  • Laura D Knogler

Fonds de Recherche du Québec - Santé

  • Laura D Knogler

Max Planck Gesellschaft (Open-access funding)

  • Laura D Knogler
  • Andreas M Kist
  • Ruben Portugues

International Max Planck Research School for Life Sciences

  • Andreas M Kist

Joachim Herz Stiftung

  • Andreas M Kist

Deutsche Forschungsgemeinschaft (PO 2105/2-1)

  • Laura D Knogler
  • Andreas M Kist
  • Ruben Portugues

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were in accordance with the Max Planck Society guidelines and approved by the Regierung von Oberbayern (TVA# 55-2-1-54-2532-82-2016)

Reviewing Editor

  1. Indira M Raman, Northwestern University, United States

Publication history

  1. Received: September 18, 2018
  2. Accepted: December 26, 2018
  3. Accepted Manuscript published: January 25, 2019 (version 1)
  4. Version of Record published: February 13, 2019 (version 2)

Copyright

© 2019, Knogler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,017
    Page views
  • 443
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    Víctor J López-Madrona et al.
    Research Article Updated

    Hippocampal firing is organized in theta sequences controlled by internal memory processes and by external sensory cues, but how these computations are coordinated is not fully understood. Although theta activity is commonly studied as a unique coherent oscillation, it is the result of complex interactions between different rhythm generators. Here, by separating hippocampal theta activity in three different current generators, we found epochs with variable theta frequency and phase coupling, suggesting flexible interactions between theta generators. We found that epochs of highly synchronized theta rhythmicity preferentially occurred during behavioral tasks requiring coordination between internal memory representations and incoming sensory information. In addition, we found that gamma oscillations were associated with specific theta generators and the strength of theta-gamma coupling predicted the synchronization between theta generators. We propose a mechanism for segregating or integrating hippocampal computations based on the flexible coordination of different theta frameworks to accommodate the cognitive needs.

    1. Neuroscience
    Kyle Jasmin et al.
    Research Article

    Individuals with congenital amusia have a lifelong history of unreliable pitch processing. Accordingly, they downweight pitch cues during speech perception and instead rely on other dimensions such as duration. We investigated the neural basis for this strategy. During fMRI, individuals with amusia (N=15) and controls (N=15) read sentences where a comma indicated a grammatical phrase boundary. They then heard two sentences spoken that differed only in pitch and/or duration cues, and selected the best match for the written sentence. Prominent reductions in functional connectivity were detected in the amusia group, between left prefrontal language-related regions and right hemisphere pitch-related regions, which reflected the between-group differences in cue weights in the same groups of listeners. Connectivity differences between these regions were not present during a control task. Our results indicate that the reliability of perceptual dimensions is linked with functional connectivity between frontal and perceptual regions, and suggest a compensatory mechanism.