Dystroglycan is a scaffold for extracellular axon guidance decisions

  1. L Bailey Lindenmaier
  2. Nicolas Parmentier
  3. Caiying Guo
  4. Fadel Tissir
  5. Kevin M Wright  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Universite' Catholique de Louvain, Belgium
  3. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Axon guidance requires interactions between extracellular signaling molecules and transmembrane receptors, but how appropriate context-dependent decisions are coordinated outside the cell remains unclear. Here we show that the transmembrane glycoprotein Dystroglycan interacts with a changing set of environmental cues that regulate the trajectories of extending axons throughout the mammalian brain and spinal cord. Dystroglycan operates primarily as an extracellular scaffold during axon guidance, as it functions non-cell autonomously and does not require signaling through its intracellular domain. We identify the transmembrane receptor Celsr3/Adgrc3 as a binding partner for Dystroglycan, and show that this interaction is critical for specific axon guidance events in vivo. These findings establish Dystroglycan as a multifunctional scaffold that coordinates extracellular matrix proteins, secreted cues, and transmembrane receptors to regulate axon guidance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. L Bailey Lindenmaier

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
  2. Nicolas Parmentier

    Institute of Neuroscience, Universite' Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  3. Caiying Guo

    Gene Targeting and Transgenics Resources, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  4. Fadel Tissir

    Institute of Neuroscience, Universite' Catholique de Louvain, Brussels, Belgium
    Competing interests
    Fadel Tissir, Reviewing editor, eLife.
  5. Kevin M Wright

    Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    wrighke@ohsu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5094-5270

Funding

National Institutes of Health (NS091027)

  • Kevin M Wright

Medical Research Foundation (N/A)

  • Kevin M Wright

ARC (17/22-079)

  • Fadel Tissir

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Mice were handled and bred in accordance with the Oregon Health and Science University IACUC guidelines, protocol #IP00000539.

Copyright

© 2019, Lindenmaier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,563
    views
  • 435
    downloads
  • 39
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. L Bailey Lindenmaier
  2. Nicolas Parmentier
  3. Caiying Guo
  4. Fadel Tissir
  5. Kevin M Wright
(2019)
Dystroglycan is a scaffold for extracellular axon guidance decisions
eLife 8:e42143.
https://doi.org/10.7554/eLife.42143

Share this article

https://doi.org/10.7554/eLife.42143

Further reading

    1. Neuroscience
    Choongheon Lee, Mohammad Shokrian ... Jong-Hoon Nam
    Research Article

    We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid–structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.

    1. Neuroscience
    Robert A Bruce, Matthew Weber ... Kumar Narayanan
    Research Article

    The role of striatal pathways in cognitive processing is unclear. We studied dorsomedial striatal cognitive processing during interval timing, an elementary cognitive task that requires mice to estimate intervals of several seconds and involves working memory for temporal rules as well as attention to the passage of time. We harnessed optogenetic tagging to record from striatal D2-dopamine receptor-expressing medium spiny neurons (D2-MSNs) in the indirect pathway and from D1-dopamine receptor-expressing MSNs (D1-MSNs) in the direct pathway. We found that D2-MSNs and D1-MSNs exhibited distinct dynamics over temporal intervals as quantified by principal component analyses and trial-by-trial generalized linear models. MSN recordings helped construct and constrain a four-parameter drift-diffusion computational model in which MSN ensemble activity represented the accumulation of temporal evidence. This model predicted that disrupting either D2-MSNs or D1-MSNs would increase interval timing response times and alter MSN firing. In line with this prediction, we found that optogenetic inhibition or pharmacological disruption of either D2-MSNs or D1-MSNs increased interval timing response times. Pharmacologically disrupting D2-MSNs or D1-MSNs also changed MSN dynamics and degraded trial-by-trial temporal decoding. Together, our findings demonstrate that D2-MSNs and D1-MSNs had opposing dynamics yet played complementary cognitive roles, implying that striatal direct and indirect pathways work together to shape temporal control of action. These data provide novel insight into basal ganglia cognitive operations beyond movement and have implications for human striatal diseases and therapies targeting striatal pathways.