Dystroglycan is a scaffold for extracellular axon guidance decisions

  1. L Bailey Lindenmaier
  2. Nicolas Parmentier
  3. Caiying Guo
  4. Fadel Tissir
  5. Kevin M Wright  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Universite' Catholique de Louvain, Belgium
  3. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Axon guidance requires interactions between extracellular signaling molecules and transmembrane receptors, but how appropriate context-dependent decisions are coordinated outside the cell remains unclear. Here we show that the transmembrane glycoprotein Dystroglycan interacts with a changing set of environmental cues that regulate the trajectories of extending axons throughout the mammalian brain and spinal cord. Dystroglycan operates primarily as an extracellular scaffold during axon guidance, as it functions non-cell autonomously and does not require signaling through its intracellular domain. We identify the transmembrane receptor Celsr3/Adgrc3 as a binding partner for Dystroglycan, and show that this interaction is critical for specific axon guidance events in vivo. These findings establish Dystroglycan as a multifunctional scaffold that coordinates extracellular matrix proteins, secreted cues, and transmembrane receptors to regulate axon guidance.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. L Bailey Lindenmaier

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    No competing interests declared.
  2. Nicolas Parmentier

    Institute of Neuroscience, Universite' Catholique de Louvain, Brussels, Belgium
    Competing interests
    No competing interests declared.
  3. Caiying Guo

    Gene Targeting and Transgenics Resources, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    No competing interests declared.
  4. Fadel Tissir

    Institute of Neuroscience, Universite' Catholique de Louvain, Brussels, Belgium
    Competing interests
    Fadel Tissir, Reviewing editor, eLife.
  5. Kevin M Wright

    Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    wrighke@ohsu.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5094-5270

Funding

National Institutes of Health (NS091027)

  • Kevin M Wright

Medical Research Foundation (N/A)

  • Kevin M Wright

ARC (17/22-079)

  • Fadel Tissir

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Carol A Mason, Columbia University, United States

Ethics

Animal experimentation: Mice were handled and bred in accordance with the Oregon Health and Science University IACUC guidelines, protocol #IP00000539.

Version history

  1. Received: September 18, 2018
  2. Accepted: February 13, 2019
  3. Accepted Manuscript published: February 13, 2019 (version 1)
  4. Version of Record published: February 28, 2019 (version 2)

Copyright

© 2019, Lindenmaier et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,418
    views
  • 427
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. L Bailey Lindenmaier
  2. Nicolas Parmentier
  3. Caiying Guo
  4. Fadel Tissir
  5. Kevin M Wright
(2019)
Dystroglycan is a scaffold for extracellular axon guidance decisions
eLife 8:e42143.
https://doi.org/10.7554/eLife.42143

Share this article

https://doi.org/10.7554/eLife.42143

Further reading

    1. Neuroscience
    Daniel Hoops, Robert Kyne ... Cecilia Flores
    Short Report

    Dopamine axons are the only axons known to grow during adolescence. Here, using rodent models, we examined how two proteins, Netrin-1 and its receptor, UNC5C, guide dopamine axons toward the prefrontal cortex and shape behaviour. We demonstrate in mice (Mus musculus) that dopamine axons reach the cortex through a transient gradient of Netrin-1-expressing cells – disrupting this gradient reroutes axons away from their target. Using a seasonal model (Siberian hamsters; Phodopus sungorus) we find that mesocortical dopamine development can be regulated by a natural environmental cue (daylength) in a sexually dimorphic manner – delayed in males, but advanced in females. The timings of dopamine axon growth and UNC5C expression are always phase-locked. Adolescence is an ill-defined, transitional period; we pinpoint neurodevelopmental markers underlying this period.

    1. Neuroscience
    Baba Yogesh, Georg B Keller
    Research Article

    Acetylcholine is released in visual cortex by axonal projections from the basal forebrain. The signals conveyed by these projections and their computational significance are still unclear. Using two-photon calcium imaging in behaving mice, we show that basal forebrain cholinergic axons in the mouse visual cortex provide a binary locomotion state signal. In these axons, we found no evidence of responses to visual stimuli or visuomotor prediction errors. While optogenetic activation of cholinergic axons in visual cortex in isolation did not drive local neuronal activity, when paired with visuomotor stimuli, it resulted in layer-specific increases of neuronal activity. Responses in layer 5 neurons to both top-down and bottom-up inputs were increased in amplitude and decreased in latency, whereas those in layer 2/3 neurons remained unchanged. Using opto- and chemogenetic manipulations of cholinergic activity, we found acetylcholine to underlie the locomotion-associated decorrelation of activity between neurons in both layer 2/3 and layer 5. Our results suggest that acetylcholine augments the responsiveness of layer 5 neurons to inputs from outside of the local network, possibly enabling faster switching between internal representations during locomotion.