How significant are the public dimensions of faculty work in review, promotion, and tenure documents?

  1. Juan Pablo Alperin  Is a corresponding author
  2. Carol Muñoz Nieves
  3. Lesley Schimanski
  4. Gustavo E Fischman
  5. Meredith T Niles
  6. Erin C McKiernan
  1. Simon Fraser University, Canada
  2. Arizona State University, United States
  3. University of Vermont, United States
  4. Universidad Nacional Autónoma de México, Mexico

Abstract

Much of the work done by faculty at both public and private universities has significant public dimensions: it is often paid for by public funds; it is often aimed at serving the public good; and it is often subject to public evaluation. To understand how the public dimensions of faculty work are valued, we analyzed review, promotion, and tenure documents from a representative sample of 129 universities in the US and Canada. Terms and concepts related to public and community are mentioned in a large portion of documents, but mostly in ways that relate to service, which is an undervalued aspect of academic careers. Moreover, the documents make significant mention of traditional research outputs and citation-based metrics: however, such outputs and metrics reward faculty work targeted to academics, and often disregard the public dimensions. Institutions that seek to embody their public mission could therefore work towards changing how faculty work is assessed and incentivized.

Data availability

The data that support the findings of this study are available in the Harvard Dataverse with the identifier https://doi.org/10.7910/DVN/VY4TJE (Alperin et al., 2019). These data include the list of institutions and academic units for which we have acquired documents along with an indicator of whether each term and concept studied was found in the documents for the institution or academic unit. The data also include the aggregated values and chi-square calculations reported. The code used for computing these aggregations can be found on Github https://github.com/ScholCommLab/rpt-project (Alperin, 2019). The documents collected are available on request from the corresponding author (JPA). These documents are not publicly available due to copyright restrictions.

The following data sets were generated

Article and author information

Author details

  1. Juan Pablo Alperin

    School of Publishing, Simon Fraser University, Vancouver, Canada
    For correspondence
    juan@alperin.ca
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9344-7439
  2. Carol Muñoz Nieves

    Scholarly Communications Lab, Simon Fraser University, Vancouver, Canada
    Competing interests
    No competing interests declared.
  3. Lesley Schimanski

    Scholarly Communications Lab, Simon Fraser University, Vancouver, Canada
    Competing interests
    No competing interests declared.
  4. Gustavo E Fischman

    Mary Lou Fulton Teachers College, Arizona State University, Tempe, United States
    Competing interests
    No competing interests declared.
  5. Meredith T Niles

    Department of Nutrition and Food Sciences, University of Vermont, Burlington, United States
    Competing interests
    No competing interests declared.
  6. Erin C McKiernan

    Departamento de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
    Competing interests
    Erin C McKiernan, is a member of the DORA Steering Committee and an advisor for the Metrics Toolkit, both volunteer positions. The authors declare they have no other competing interests..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9430-5221

Funding

Open Society Foundations (OR2016-29841)

  • Juan Pablo Alperin
  • Meredith T Niles
  • Erin C McKiernan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Emma Pewsey, eLife, United Kingdom

Publication history

  1. Received: September 24, 2018
  2. Accepted: February 11, 2019
  3. Accepted Manuscript published: February 12, 2019 (version 1)
  4. Version of Record published: February 26, 2019 (version 2)
  5. Version of Record updated: March 19, 2019 (version 3)

Copyright

© 2019, Alperin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,974
    Page views
  • 462
    Downloads
  • 75
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Juan Pablo Alperin
  2. Carol Muñoz Nieves
  3. Lesley Schimanski
  4. Gustavo E Fischman
  5. Meredith T Niles
  6. Erin C McKiernan
(2019)
How significant are the public dimensions of faculty work in review, promotion, and tenure documents?
eLife 8:e42254.
https://doi.org/10.7554/eLife.42254
  1. Further reading

Further reading

    1. Computational and Systems Biology
    Stewart Heitmann, Jamie I Vandenberg, Adam P Hill
    Research Article

    Many classes of drugs can induce fatal cardiac arrhythmias by disrupting the electrophysiology of cardiomyocytes. Safety guidelines thus require all new drugs to be assessed for pro-arrhythmic risk prior to conducting human trials. The standard safety protocols primarily focus on drug blockade of the delayed-rectifier potassium current (IKr). Yet the risk is better assessed using four key ion currents (IKr, ICaL, INaL, IKs). We simulated 100,000 phenotypically diverse cardiomyocytes to identify the underlying relationship between the blockade of those currents and the emergence of ectopic beats in the action potential. We call that relationship the axis of arrhythmia. It serves as a yardstick for quantifying the arrhythmogenic risk of any drug from its profile of multi-channel block alone. We tested it on 109 drugs and found that it predicted the clinical risk labels with an accuracy of 88.1–90.8%. Pharmacologists can use our method to assess the safety of novel drugs without resorting to animal testing or unwieldy computer simulations.

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Elisabeth Schnell, Maarten Leemans ... Hans Op de Beeck
    Research Article

    Many species are able to recognize objects, but it has been proven difficult to pinpoint and compare how different species solve this task. Recent research suggested to combine computational and animal modelling in order to obtain a more systematic understanding of task complexity and compare strategies between species. In this study, we created a large multidimensional stimulus set and designed a visual discrimination task partially based upon modelling with a convolutional deep neural network (CNN). Experiments included rats (N = 11; 1115 daily sessions in total for all rats together) and humans (N = 45). Each species was able to master the task and generalize to a variety of new images. Nevertheless, rats and humans showed very little convergence in terms of which object pairs were associated with high and low performance, suggesting the use of different strategies. There was an interaction between species and whether stimulus pairs favoured early or late processing in a CNN. A direct comparison with CNN representations and visual feature analyses revealed that rat performance was best captured by late convolutional layers and partially by visual features such as brightness and pixel-level similarity, while human performance related more to the higher-up fully connected layers. These findings highlight the additional value of using a computational approach for the design of object recognition tasks. Overall, this computationally informed investigation of object recognition behaviour reveals a strong discrepancy in strategies between rodent and human vision.