Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass

  1. Bo Shen
  2. Kristy Vardy
  3. Payton Hughes
  4. Alpaslan Tasdogan
  5. Zhiyu Zhao
  6. Rui Yue
  7. Genevieve Crane
  8. Sean J Morrison  Is a corresponding author
  1. University of Texas Southwestern Medical Center, United States
  2. Tongji University, China
  3. Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, United States

Abstract

We previously discovered a new osteogenic growth factor that is required to maintain adult skeletal bone mass, Osteolectin/Clec11a. Osteolectin acts on Leptin Receptor+ (LepR+) skeletal stem cells and other osteogenic progenitors in bone marrow to promote their differentiation into osteoblasts. Here we identity a receptor for Osteolectin, integrin a11, which is expressed by LepR+ cells and osteoblasts. a11b1 integrin binds Osteolectin with nanomolar affinity and is required for the osteogenic response to Osteolectin. Deletion of Itga11 (which encodes a11) from mouse and human bone marrow stromal cells impaired osteogenic differentiation and blocked their response to Osteolectin. Like Osteolectin deficient mice, Lepr-cre; Itga11fl/fl mice appeared grossly normal but exhibited reduced osteogenesis and accelerated bone loss during adulthood. Osteolectin binding to a11b1 promoted Wnt pathway activation, which was necessary for the osteogenic response to Osteolectin. This reveals a new mechanism for maintenance of adult bone mass: Wnt pathway activation by Osteolectin/a11b1 signaling.

Data availability

Source data files have been provided for all figures.

Article and author information

Author details

  1. Bo Shen

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5237-6144
  2. Kristy Vardy

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  3. Payton Hughes

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  4. Alpaslan Tasdogan

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
  5. Zhiyu Zhao

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6308-6997
  6. Rui Yue

    Institute of Regenerative Medicine, Tongji University, Shanghai, China
    Competing interests
    Rui Yue, Was an inventor on a pending patent application claiming the use of Osteolectin to promote bone formation. The patent application has not been licensed, so has no existing financial interest in it. WO patent application number: WO2016172026A1.
  7. Genevieve Crane

    Children's Research Institute, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9274-0214
  8. Sean J Morrison

    Children's Medical Center Research Institute at UT Southwestern, Department of Pediatrics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    sean.morrison@utsouthwestern.edu
    Competing interests
    Sean J Morrison, Is an inventor on a pending patent application claiming the use of Osteolectin to promote bone formation. The IP has not been licensed, so there is no existing financial interest. WO patent application number: WO2016172026A1. Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1587-8329

Funding

Howard Hughes Medical Institute

  • Sean J Morrison

National Institutes of Health (AG02494514)

  • Sean J Morrison

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All procedures were approved by the UT Southwestern Institutional Animal Care and Use Committee (protocol number 2016-101334-G).

Copyright

© 2019, Shen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,801
    views
  • 652
    downloads
  • 72
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Bo Shen
  2. Kristy Vardy
  3. Payton Hughes
  4. Alpaslan Tasdogan
  5. Zhiyu Zhao
  6. Rui Yue
  7. Genevieve Crane
  8. Sean J Morrison
(2019)
Integrin alpha11 is an Osteolectin receptor and is required for the maintenance of adult skeletal bone mass
eLife 8:e42274.
https://doi.org/10.7554/eLife.42274

Share this article

https://doi.org/10.7554/eLife.42274

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Ruben Sebastian-Perez, Shoma Nakagawa ... Maria Pia Cosma
    Research Article

    Chromocenters are established after the 2-cell (2C) stage during mouse embryonic development, but the factors that mediate chromocenter formation remain largely unknown. To identify regulators of 2C heterochromatin establishment in mice, we generated an inducible system to convert embryonic stem cells (ESCs) to 2C-like cells. This conversion is marked by a global reorganization and dispersion of H3K9me3-heterochromatin foci, which are then reversibly formed upon re-entry into pluripotency. By profiling the chromatin-bound proteome (chromatome) through genome capture of ESCs transitioning to 2C-like cells, we uncover chromatin regulators involved in de novo heterochromatin formation. We identified TOPBP1 and investigated its binding partner SMARCAD1. SMARCAD1 and TOPBP1 associate with H3K9me3-heterochromatin in ESCs. Interestingly, the nuclear localization of SMARCAD1 is lost in 2C-like cells. SMARCAD1 or TOPBP1 depletion in mouse embryos leads to developmental arrest, reduction of H3K9me3, and remodeling of heterochromatin foci. Collectively, our findings contribute to comprehending the maintenance of chromocenters during early development.

    1. Stem Cells and Regenerative Medicine
    Tino Stauber, Greta Moschini ... Jess G Snedeker
    Research Article

    Tendinopathies are debilitating diseases currently increasing in prevalence and associated costs. There is a need to deepen our understanding of the underlying cell signaling pathways to unlock effective treatments. In this work, we screen cell signaling pathways in human tendinopathies and find positively enriched IL-6/JAK/STAT signaling alongside signatures of cell populations typically activated by IL-6 in other tissues. In human tendinopathic tendons, we also confirm the strong presence and co-localization of IL-6, IL-6R, and CD90, an established marker of reparative fibroblasts. To dissect the underlying causalities, we combine IL-6 knock-out mice with an explant-based assembloid model of tendon damage to successfully connect IL-6 signaling to reparative fibroblast activation and recruitment. Vice versa, we show that these reparative fibroblasts promote the development of tendinopathy hallmarks in the damaged explant upon IL-6 activation. We conclude that IL-6 activates tendon fibroblast populations which then initiate and deteriorate tendinopathy hallmarks.