More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction

  1. Baoqiang Li  Is a corresponding author
  2. Tatiana V Esipova
  3. Ikbal Sencan
  4. Kıvılcım Kılıç
  5. Buyin Fu
  6. Michele Desjardins
  7. Mohammad A Moeini
  8. Sreekanth Kura
  9. Mohammad A Yaseen
  10. Frederic Lesage
  11. Leif Østergaard
  12. Anna Devor
  13. David A Boas
  14. Sergei A Vinogradov
  15. Sava Sakadžić
  1. Massachusetts General Hospital, United States
  2. University of Pennsylvania, United States
  3. University of California, San Diego, United States
  4. École Polytechnique de Montréal, Canada
  5. Aarhus University, Denmark

Abstract

Our understanding of how capillary blood flow and oxygen distribute across cortical layers to meet the local metabolic demand is incomplete. We addressed this question by using two-photon imaging of resting-state microvascular oxygen partial pressure (PO2) and flow in the whisker barrel cortex in awake mice. Our measurements in layers I-V show that the capillary red-blood-cell flux and oxygenation heterogeneity, and the intracapillary resistance to oxygen delivery, all decrease with depth, reaching a minimum around layer IV, while the depth-dependent oxygen extraction fraction is increased in layer IV, where oxygen demand is presumably the highest. Our findings suggest that more homogeneous distribution of the physiological observables relevant to oxygen transport to tissue is an important part of the microvascular network adaptation to local brain metabolism. These results will inform the biophysical models of layer-specific cerebral oxygen delivery and consumption and improve our understanding of the diseases that affect cerebral microcirculation.

Data availability

All data generated or analyzed during this study are included in this paper and the supporting files.

Article and author information

Author details

  1. Baoqiang Li

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    For correspondence
    baoqiang.li@mgh.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2992-3303
  2. Tatiana V Esipova

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Ikbal Sencan

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kıvılcım Kılıç

    Department of Neurosciences, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Buyin Fu

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Michele Desjardins

    Department of Radiology, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Mohammad A Moeini

    Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Sreekanth Kura

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Mohammad A Yaseen

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4154-152X
  10. Frederic Lesage

    Institute of Biomedical Engineering, École Polytechnique de Montréal, Montréal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Leif Østergaard

    Center of Functionally Integrative Neuroscience and MINDLab, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
    Competing interests
    The authors declare that no competing interests exist.
  12. Anna Devor

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5143-3960
  13. David A Boas

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Sergei A Vinogradov

    Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4649-5534
  15. Sava Sakadžić

    Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, United States
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Institutes of Health (NS091230)

  • Sava Sakadžić

National Institutes of Health (MH111359)

  • Sava Sakadžić

National Institutes of Health (EB018464)

  • Sava Sakadžić

National Institutes of Health (NS092986)

  • Sava Sakadžić

National Institutes of Health (NS055104)

  • Sava Sakadžić

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal surgical and experimental procedures were conducted following the Guide for the Care and Use of Laboratory Animals and approved by the Massachusetts General Hospital Subcommittee on Research Animal Care (Protocol No.: 2007N000050).

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,685
    views
  • 375
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Baoqiang Li
  2. Tatiana V Esipova
  3. Ikbal Sencan
  4. Kıvılcım Kılıç
  5. Buyin Fu
  6. Michele Desjardins
  7. Mohammad A Moeini
  8. Sreekanth Kura
  9. Mohammad A Yaseen
  10. Frederic Lesage
  11. Leif Østergaard
  12. Anna Devor
  13. David A Boas
  14. Sergei A Vinogradov
  15. Sava Sakadžić
(2019)
More homogeneous capillary flow and oxygenation in deeper cortical layers correlate with increased oxygen extraction
eLife 8:e42299.
https://doi.org/10.7554/eLife.42299

Share this article

https://doi.org/10.7554/eLife.42299

Further reading

    1. Neuroscience
    Mighten C Yip, Mercedes M Gonzalez ... Craig R Forest
    Tools and Resources

    Significant technical challenges exist when measuring synaptic connections between neurons in living brain tissue. The patch clamping technique, when used to probe for synaptic connections, is manually laborious and time-consuming. To improve its efficiency, we pursued another approach: instead of retracting all patch clamping electrodes after each recording attempt, we cleaned just one of them and reused it to obtain another recording while maintaining the others. With one new patch clamp recording attempt, many new connections can be probed. By placing one pipette in front of the others in this way, one can ‘walk’ across the mouse brain slice, termed ‘patch-walking.’ We performed 136 patch clamp attempts for two pipettes, achieving 71 successful whole cell recordings (52.2%). Of these, we probed 29 pairs (i.e. 58 bidirectional probed connections) averaging 91 μm intersomatic distance, finding three connections. Patch-walking yields 80–92% more probed connections, for experiments with 10–100 cells than the traditional synaptic connection searching method.

    1. Neuroscience
    Mitchell P Morton, Sachira Denagamage ... Anirvan S Nandy
    Research Article

    Identical stimuli can be perceived or go unnoticed across successive presentations, producing divergent behavioral outcomes despite similarities in sensory input. We sought to understand how fluctuations in behavioral state and cortical layer and cell class-specific neural activity underlie this perceptual variability. We analyzed physiological measurements of state and laminar electrophysiological activity in visual area V4 while monkeys were rewarded for correctly reporting a stimulus change at perceptual threshold. Hit trials were characterized by a behavioral state with heightened arousal, greater eye position stability, and enhanced decoding performance of stimulus identity from neural activity. Target stimuli evoked stronger responses in V4 in hit trials, and excitatory neurons in the superficial layers, the primary feed-forward output of the cortical column, exhibited lower variability. Feed-forward interlaminar population correlations were stronger on hits. Hit trials were further characterized by greater synchrony between the output layers of the cortex during spontaneous activity, while the stimulus-evoked period showed elevated synchrony in the feed-forward pathway. Taken together, these results suggest that a state of elevated arousal and stable retinal images allow enhanced processing of sensory stimuli, which contributes to hits at perceptual threshold.