Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease

  1. Silvia C Bobeica
  2. Shihui Dong
  3. Liujie Huo
  4. Nuria Mazo
  5. Martin Irving Harrison McLaughlin
  6. Gonzalo Jiménez-Osés
  7. Satish K Nair  Is a corresponding author
  8. Wilfred A van der Donk  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. Universidad de La Rioja, Spain

Abstract

The secretion of peptides and proteins is essential for survival and ecological adaptation of bacteria. Dual-functional ATP-binding cassette transporters export antimicrobial or quorum signaling peptides in Gram-positive bacteria. Their substrates contain a leader sequence that is excised by an N-terminal peptidase C39 domain at a double Gly motif. We characterized the protease domain (LahT150) of a transporter from a lanthipeptide biosynthetic operon in Lachnospiraceae and demonstrate that this protease can remove the leader peptide from a diverse set of peptides. The 2.0 Å resolution crystal structure of the protease domain in complex with a covalently bound leader peptide demonstrates the basis for substrate recognition across the entire class of such transporters. The structural data also provide a model for understanding the role of leader peptide recognition in the translocation cycle, and the function of degenerate, non-functional C39-like domains (CLD) in substrate recruitment in toxin exporters in Gram-negative bacteria.

Data availability

Diffraction data has been deposited at Protein Data Bank under 6MPZ.

The following data sets were generated

Article and author information

Author details

  1. Silvia C Bobeica

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  2. Shihui Dong

    Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1743-2163
  3. Liujie Huo

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  4. Nuria Mazo

    Departamento de Química, Universidad de La Rioja, La Rioja, Spain
    Competing interests
    No competing interests declared.
  5. Martin Irving Harrison McLaughlin

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    No competing interests declared.
  6. Gonzalo Jiménez-Osés

    Departamento de Química, Universidad de La Rioja, La Rioja, Spain
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0105-4337
  7. Satish K Nair

    Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    s-nair@life.uiuc.edu
    Competing interests
    No competing interests declared.
  8. Wilfred A van der Donk

    Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    vddonk@illinois.edu
    Competing interests
    Wilfred A van der Donk, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5467-7071

Funding

National Institutes of Health (GM058822)

  • Wilfred A van der Donk

Ministerio de Economía y Competitividad (CTQ2015-70524-R)

  • Gonzalo Jiménez-Osés

National Institutes of Health (GM079038)

  • Satish K Nair

Ministerio de Economía y Competitividad (RYC-2013-14706)

  • Gonzalo Jiménez-Osés

Universidad de La Rioja (Predoctoral fellowship)

  • Nuria Mazo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Benjamin F Cravatt, The Scripps Research Institute, United States

Version history

  1. Received: September 27, 2018
  2. Accepted: January 12, 2019
  3. Accepted Manuscript published: January 14, 2019 (version 1)
  4. Version of Record published: February 5, 2019 (version 2)

Copyright

© 2019, Bobeica et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,947
    Page views
  • 520
    Downloads
  • 57
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Silvia C Bobeica
  2. Shihui Dong
  3. Liujie Huo
  4. Nuria Mazo
  5. Martin Irving Harrison McLaughlin
  6. Gonzalo Jiménez-Osés
  7. Satish K Nair
  8. Wilfred A van der Donk
(2019)
Insights into AMS/PCAT transporters from biochemical and structural characterization of a double Glycine motif protease
eLife 8:e42305.
https://doi.org/10.7554/eLife.42305

Share this article

https://doi.org/10.7554/eLife.42305

Further reading

    1. Biochemistry and Chemical Biology
    2. Medicine
    Giulia Leanza, Francesca Cannata ... Nicola Napoli
    Research Article

    Type 2 diabetes (T2D) is associated with higher fracture risk, despite normal or high bone mineral density. We reported that bone formation genes (SOST and RUNX2) and advanced glycation end-products (AGEs) were impaired in T2D. We investigated Wnt signaling regulation and its association with AGEs accumulation and bone strength in T2D from bone tissue of 15 T2D and 21 non-diabetic postmenopausal women undergoing hip arthroplasty. Bone histomorphometry revealed a trend of low mineralized volume in T2D (T2D 0.249% [0.156–0.366]) vs non-diabetic subjects 0.352% [0.269–0.454]; p=0.053, as well as reduced bone strength (T2D 21.60 MPa [13.46–30.10] vs non-diabetic subjects 76.24 MPa [26.81–132.9]; p=0.002). We also showed that gene expression of Wnt agonists LEF-1 (p=0.0136) and WNT10B (p=0.0302) were lower in T2D. Conversely, gene expression of WNT5A (p=0.0232), SOST (p<0.0001), and GSK3B (p=0.0456) were higher, while collagen (COL1A1) was lower in T2D (p=0.0482). AGEs content was associated with SOST and WNT5A (r=0.9231, p<0.0001; r=0.6751, p=0.0322), but inversely correlated with LEF-1 and COL1A1 (r=–0.7500, p=0.0255; r=–0.9762, p=0.0004). SOST was associated with glycemic control and disease duration (r=0.4846, p=0.0043; r=0.7107, p=0.00174), whereas WNT5A and GSK3B were only correlated with glycemic control (r=0.5589, p=0.0037; r=0.4901, p=0.0051). Finally, Young’s modulus was negatively correlated with SOST (r=−0.5675, p=0.0011), AXIN2 (r=−0.5523, p=0.0042), and SFRP5 (r=−0.4442, p=0.0437), while positively correlated with LEF-1 (r=0.4116, p=0.0295) and WNT10B (r=0.6697, p=0.0001). These findings suggest that Wnt signaling and AGEs could be the main determinants of bone fragility in T2D.

    1. Biochemistry and Chemical Biology
    Valentin Bohl, Nele Merret Hollmann ... Axel Mogk
    Research Article

    Heat stress can cause cell death by triggering the aggregation of essential proteins. In bacteria, aggregated proteins are rescued by the canonical Hsp70/AAA+ (ClpB) bi-chaperone disaggregase. Man-made, severe stress conditions applied during, e.g., food processing represent a novel threat for bacteria by exceeding the capacity of the Hsp70/ClpB system. Here, we report on the potent autonomous AAA+ disaggregase ClpL from Listeria monocytogenes that provides enhanced heat resistance to the food-borne pathogen enabling persistence in adverse environments. ClpL shows increased thermal stability and enhanced disaggregation power compared to Hsp70/ClpB, enabling it to withstand severe heat stress and to solubilize tight aggregates. ClpL binds to protein aggregates via aromatic residues present in its N-terminal domain (NTD) that adopts a partially folded and dynamic conformation. Target specificity is achieved by simultaneous interactions of multiple NTDs with the aggregate surface. ClpL shows remarkable structural plasticity by forming diverse higher assembly states through interacting ClpL rings. NTDs become largely sequestered upon ClpL ring interactions. Stabilizing ring assemblies by engineered disulfide bonds strongly reduces disaggregation activity, suggesting that they represent storage states.