Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus

Abstract

Dopamine neurotransmission is suspected to play important physiological roles in multiple sparsely innervated brain nuclei, but there has not been a means to measure synaptic dopamine release in such regions. The globus pallidus externa (GPe) is a major locus in the basal ganglia that displays a sparse innervation of en passant dopamine axonal fibers. Due to the low levels of innervation that preclude electrochemical analysis, it is unknown if these axons engage in neurotransmission. To address this, we introduce an optical approach using a pH-sensitive fluorescent false neurotransmitter, FFN102, that exhibits increased fluorescence upon exocytosis from the acidic synaptic vesicle to the neutral extracellular milieu. In marked contrast to the striatum, FFN102 transients in the mouse GPe were spatially heterogeneous, smaller than in striatum with the exception of sparse hot spots, and significantly enhanced by high frequency stimulation. Our results support hot spots of dopamine release from substantia nigra axons.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jozsef Meszaros

    Laboratory for Functional Optical Imaging, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Timothy Cheung

    Department of Neurology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Maya M Erler

    Graduate Program in Pharmacology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Un Jung Kang

    Department of Neurology, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Dalibor Sames

    Department of Chemistry, Columbia University, New York, United States
    For correspondence
    ds584@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Christoph Kellendonk

    Department of Psychiatry, Columbia University, New York, United States
    For correspondence
    ck491@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3302-2188
  7. David Sulzer

    Department of Psychiatry, Columbia University, New York, United States
    For correspondence
    ds43@cumc.columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7632-0439

Funding

NIH Office of the Director (R01 NS101982)

  • Un Jung Kang
  • David Sulzer

U.S. Department of Defense (PR161817)

  • Un Jung Kang

Parkinson's Disease Foundation

  • Timothy Cheung
  • Un Jung Kang
  • David Sulzer

NARSAD

  • Christoph Kellendonk

JPB Foundation

  • David Sulzer

NIH Office of the Director (R01 DA07418)

  • David Sulzer

NIH Office of the Director (R03 NS096494)

  • Un Jung Kang

NIH Office of the Director (RO1 MH093672)

  • Christoph Kellendonk

NIH Office of the Director (T32 NS06492B-04)

  • Jozsef Meszaros

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal protocols followed NIH guidelines and were approved by Columbia University's Institutional Animal Care and Use Committee.

Copyright

© 2018, Meszaros et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,849
    views
  • 286
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jozsef Meszaros
  2. Timothy Cheung
  3. Maya M Erler
  4. Un Jung Kang
  5. Dalibor Sames
  6. Christoph Kellendonk
  7. David Sulzer
(2018)
Evoked transients of pH-sensitive fluorescent false neurotransmitter reveal dopamine hot spots in the globus pallidus
eLife 7:e42383.
https://doi.org/10.7554/eLife.42383

Share this article

https://doi.org/10.7554/eLife.42383

Further reading

    1. Neuroscience
    Christopher Bell, Lukas Kilo ... Stefanie Ryglewski
    Research Article

    At many vertebrate synapses, presynaptic functions are tuned by expression of different Cav2 channels. Most invertebrate genomes contain only one Cav2 gene. The Drosophila Cav2 homolog, cacophony (cac), induces synaptic vesicle release at presynaptic active zones (AZs). We hypothesize that Drosophila cac functional diversity is enhanced by two mutually exclusive exon pairs that are not conserved in vertebrates, one in the voltage sensor and one in the loop binding Caβ and Gβγ subunits. We find that alternative splicing in the voltage sensor affects channel activation voltage. Only the isoform with the higher activation voltage localizes to AZs at the glutamatergic Drosophila larval neuromuscular junction and is imperative for normal synapse function. By contrast, alternative splicing at the other alternative exon pair tunes multiple aspects of presynaptic function. While expression of one exon yields normal transmission, expression of the other reduces channel number in the AZ and thus release probability. This also abolishes presynaptic homeostatic plasticity. Moreover, reduced channel number affects short-term plasticity, which is rescued by increasing the external calcium concentration to match release probability to control. In sum, in Drosophila alternative splicing provides a mechanism to regulate different aspects of presynaptic functions with only one Cav2 gene.

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Yangyu Wu, Yangyang Yan ... Fred J Sigworth
    Research Article

    We present near-atomic-resolution cryoEM structures of the mammalian voltage-gated potassium channel Kv1.2 in open, C-type inactivated, toxin-blocked and sodium-bound states at 3.2 Å, 2.5 Å, 3.2 Å, and 2.9 Å. These structures, all obtained at nominally zero membrane potential in detergent micelles, reveal distinct ion-occupancy patterns in the selectivity filter. The first two structures are very similar to those reported in the related Shaker channel and the much-studied Kv1.2–2.1 chimeric channel. On the other hand, two new structures show unexpected patterns of ion occupancy. First, the toxin α-Dendrotoxin, like Charybdotoxin, is seen to attach to the negatively-charged channel outer mouth, and a lysine residue penetrates into the selectivity filter, with the terminal amine coordinated by carbonyls, partially disrupting the outermost ion-binding site. In the remainder of the filter two densities of bound ions are observed, rather than three as observed with other toxin-blocked Kv channels. Second, a structure of Kv1.2 in Na+ solution does not show collapse or destabilization of the selectivity filter, but instead shows an intact selectivity filter with ion density in each binding site. We also attempted to image the C-type inactivated Kv1.2 W366F channel in Na+ solution, but the protein conformation was seen to be highly variable and only a low-resolution structure could be obtained. These findings present new insights into the stability of the selectivity filter and the mechanism of toxin block of this intensively studied, voltage-gated potassium channel.