Specification of diverse cell types during early neurogenesis of the mouse cerebellum

  1. John W Wizeman
  2. Qiuxia Guo
  3. Elliot M Wilion
  4. James YH Li  Is a corresponding author
  1. University of Connecticut School of Medicine, United States
  2. University of Connecticut, United States

Abstract

We applied single-cell RNA sequencing to profile genome-wide gene expression in about 9,400 individual cerebellar cells from the mouse embryo at embryonic day 13.5. Reiterative clustering identified the major cerebellar cell types and subpopulations of different lineages. Through pseudotemporal ordering to reconstruct developmental trajectories, we identified novel transcriptional programs controlling cell fate specification of populations arising from the ventricular zone and the rhombic lip, two distinct germinal zones of the embryonic cerebellum. Together, our data revealed cell-specific markers for studying the cerebellum, gene-expression cascades underlying cell fate specification, and a number of previously unknown subpopulations that may play an integral role in the formation and function of the cerebellum. Our findings will facilitate new discovery by providing insights into the molecular and cell type diversity in the developing cerebellum.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE120372.

The following data sets were generated

Article and author information

Author details

  1. John W Wizeman

    Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Qiuxia Guo

    Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Elliot M Wilion

    Department of Physiology and Neurobiology, University of Connecticut, Storrs, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. James YH Li

    Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, United States
    For correspondence
    jali@uchc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9231-2698

Funding

NIH Office of the Director (R01NS106844)

  • James YH Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Constance L Cepko, Harvard Medical School, United States

Ethics

Animal experimentation: All procedures involving animals were approved by the Animal Care Committee at the University of Connecticut Health Center and were in compliance with national and state laws and policies. (protocol #101849-0621

Version history

  1. Received: September 27, 2018
  2. Accepted: February 7, 2019
  3. Accepted Manuscript published: February 8, 2019 (version 1)
  4. Version of Record published: February 20, 2019 (version 2)

Copyright

© 2019, Wizeman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,891
    Page views
  • 1,084
    Downloads
  • 53
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. John W Wizeman
  2. Qiuxia Guo
  3. Elliot M Wilion
  4. James YH Li
(2019)
Specification of diverse cell types during early neurogenesis of the mouse cerebellum
eLife 8:e42388.
https://doi.org/10.7554/eLife.42388

Share this article

https://doi.org/10.7554/eLife.42388

Further reading

    1. Developmental Biology
    2. Neuroscience
    Guangqin Wang, Yunpeng Gu, Zhiyong Liu
    Research Article

    Mammals harbor a limited number of sound-receptor hair cells (HCs) that cannot be regenerated after damage. Thus, investigating the underlying molecular mechanisms that maintain HC survival is crucial for preventing hearing impairment. Intriguingly, Pou4f3-/- or Gfi1-/- HCs form initially but then rapidly degenerate, whereas Rbm24-/- HCs degenerate considerably later. However, the transcriptional cascades involving Pou4f3, Gfi1, and Rbm24 remain undescribed. Here, we demonstrate that Rbm24 expression is completely repressed in Pou4f3-/- HCs but unaltered in Gfi1-/- HCs, and further that the expression of both POU4F3 and GFI1 is intact in Rbm24-/- HCs. Moreover, by using in vivo mouse transgenic reporter assays, we identify three Rbm24 enhancers to which POU4F3 binds. Lastly, through in vivo genetic testing of whether Rbm24 restoration alleviates the degeneration of Pou4f3-/- HCs, we show that ectopic Rbm24 alone cannot prevent Pou4f3-/- HCs from degenerating. Collectively, our findings provide new molecular and genetic insights into how HC survival is regulated.

    1. Developmental Biology
    2. Evolutionary Biology
    Jaaved Mohammed, Neha Arora ... Joanna Wysocka
    Research Article

    Genome-wide association studies (GWAS) identified thousands of genetic variants linked to phenotypic traits and disease risk. However, mechanistic understanding of how GWAS variants influence complex morphological traits and can, in certain cases, simultaneously confer normal-range phenotypic variation and disease predisposition, is still largely lacking. Here, we focus on rs6740960, a single nucleotide polymorphism (SNP) at the 2p21 locus, which in GWAS studies has been associated both with normal-range variation in jaw shape and with an increased risk of non-syndromic orofacial clefting. Using in vitro derived embryonic cell types relevant for human facial morphogenesis, we show that this SNP resides in an enhancer that regulates chondrocytic expression of PKDCC - a gene encoding a tyrosine kinase involved in chondrogenesis and skeletal development. In agreement, we demonstrate that the rs6740960 SNP is sufficient to confer chondrocyte-specific differences in PKDCC expression. By deploying dense landmark morphometric analysis of skull elements in mice, we show that changes in Pkdcc dosage are associated with quantitative changes in the maxilla, mandible, and palatine bone shape that are concordant with the facial phenotypes and disease predisposition seen in humans. We further demonstrate that the frequency of the rs6740960 variant strongly deviated among different human populations, and that the activity of its cognate enhancer diverged in hominids. Our study provides a mechanistic explanation of how a common SNP can mediate normal-range and disease-associated morphological variation, with implications for the evolution of human facial features.