Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses

Abstract

In the mammalian retina, direction-selectivity is thought to originate in the dendrites of GABAergic/cholinergic starburst amacrine cells, where it is first observed. However, here we demonstrate that direction selectivity in downstream ganglion cells remains remarkably unaffected when starburst dendrites are rendered non-directional, using a novel strategy combining a conditional GABAA α2 receptor knockout mouse with optogenetics. We show that temporal asymmetries between excitation/inhibition, arising from the differential connectivity patterns of starburst cholinergic and GABAergic synapses to ganglion cells, form the basis for a parallel mechanism generating direction selectivity. We further demonstrate that these distinct mechanisms work in a coordinated way to refine direction selectivity as the stimulus crosses the ganglion cell's receptive field. Thus, precise spatiotemporal patterns of inhibition and excitation that determine directional responses in ganglion cells are shaped by two 'core' mechanisms, both arising from distinct specializations of the starburst network.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Laura Hanson

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8737-9513
  2. Santhosh Sethuramanujam

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Geoff deRosenroll

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Varsha Jain

    Department of Biology, University of Victoria, Victoria, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Gautam Bhagwan Awatramani

    Department of Biology, University of Victoria, Victoria, Canada
    For correspondence
    gautam@uvic.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0610-5271

Funding

Canadian Institutes of Health Research (159444)

  • Gautam Bhagwan Awatramani

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were performed in accordance with the Canadian Council on Animal Care and approved by the Animal Care Committee (protocol 2016-015) of the University of Victoria

Reviewing Editor

  1. Fred Rieke, University of Washington, United States

Publication history

  1. Received: September 27, 2018
  2. Accepted: February 1, 2019
  3. Accepted Manuscript published: February 4, 2019 (version 1)
  4. Version of Record published: February 15, 2019 (version 2)

Copyright

© 2019, Hanson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,889
    Page views
  • 438
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Laura Hanson
  2. Santhosh Sethuramanujam
  3. Geoff deRosenroll
  4. Varsha Jain
  5. Gautam Bhagwan Awatramani
(2019)
Retinal direction selectivity in the absence of asymmetric starburst amacrine cell responses
eLife 8:e42392.
https://doi.org/10.7554/eLife.42392

Further reading

    1. Neuroscience
    Charlotte Arlt et al.
    Research Article Updated

    Neural activity in the mammalian cortex has been studied extensively during decision tasks, and recent work aims to identify under what conditions cortex is actually necessary for these tasks. We discovered that mice with distinct cognitive experiences, beyond sensory and motor learning, use different cortical areas and neural activity patterns to solve the same navigation decision task, revealing past learning as a critical determinant of whether cortex is necessary for goal-directed navigation. We used optogenetics and calcium imaging to study the necessity and neural activity of multiple cortical areas in mice with different training histories. Posterior parietal cortex and retrosplenial cortex were mostly dispensable for accurate performance of a simple navigation task. In contrast, these areas were essential for the same simple task when mice were previously trained on complex tasks with delay periods or association switches. Multiarea calcium imaging showed that, in mice with complex-task experience, single-neuron activity had higher selectivity and neuron–neuron correlations were weaker, leading to codes with higher task information. Therefore, past experience is a key factor in determining whether cortical areas have a causal role in goal-directed navigation.

    1. Neuroscience
    Payel Chatterjee et al.
    Research Article Updated

    During flight maneuvers, insects exhibit compensatory head movements which are essential for stabilizing the visual field on their retina, reducing motion blur, and supporting visual self-motion estimation. In Diptera, such head movements are mediated via visual feedback from their compound eyes that detect retinal slip, as well as rapid mechanosensory feedback from their halteres – the modified hindwings that sense the angular rates of body rotations. Because non-Dipteran insects lack halteres, it is not known if mechanosensory feedback about body rotations plays any role in their head stabilization response. Diverse non-Dipteran insects are known to rely on visual and antennal mechanosensory feedback for flight control. In hawkmoths, for instance, reduction of antennal mechanosensory feedback severely compromises their ability to control flight. Similarly, when the head movements of freely flying moths are restricted, their flight ability is also severely impaired. The role of compensatory head movements as well as multimodal feedback in insect flight raises an interesting question: in insects that lack halteres, what sensory cues are required for head stabilization? Here, we show that in the nocturnal hawkmoth Daphnis nerii, compensatory head movements are mediated by combined visual and antennal mechanosensory feedback. We subjected tethered moths to open-loop body roll rotations under different lighting conditions, and measured their ability to maintain head angle in the presence or absence of antennal mechanosensory feedback. Our study suggests that head stabilization in moths is mediated primarily by visual feedback during roll movements at lower frequencies, whereas antennal mechanosensory feedback is required when roll occurs at higher frequency. These findings are consistent with the hypothesis that control of head angle results from a multimodal feedback loop that integrates both visual and antennal mechanosensory feedback, albeit at different latencies. At adequate light levels, visual feedback is sufficient for head stabilization primarily at low frequencies of body roll. However, under dark conditions, antennal mechanosensory feedback is essential for the control of head movements at high frequencies of body roll.