TRIM28 promotes HIV-1 latency by SUMOylating CDK9 and inhibiting P-TEFb

  1. Xiancai Ma
  2. Tao Yang
  3. Yuewen Luo
  4. Liyang Wu
  5. Yawen Jiang
  6. Zheng Song
  7. Ting Pan
  8. Bingfeng Liu
  9. Guangyan Liu
  10. Jun Liu
  11. Fei Yu
  12. Zhangping He
  13. Wanying Zhang
  14. Jinyu Yang
  15. Liting Liang
  16. Yuanjun Guan
  17. Xu Zhang
  18. Linghua Li
  19. Weiping Cai
  20. Xiaoping Tang
  21. Song Gao
  22. Kai Deng
  23. Hui Zhang  Is a corresponding author
  1. Sun Yat-sen University, China
  2. Shenyang Medical College, China
  3. Sun Yat-sen University Cancer Center, China
  4. Guangzhou Eighth People’s Hospital, China
12 figures, 4 videos, 1 table and 8 additional files

Figures

Figure 1 with 3 supplements
TRIM28 suppresses HIV-1 expression and contributes to HIV-1 latency.

(A) A siRNA library targeting 182 human genes was transfected into TZM-bl cell line, respectively. Three distinct siRNAs targeting each gene were transfected as a mixture. Forty-eight hours …

https://doi.org/10.7554/eLife.42426.003
Figure 1—figure supplement 1
TRIM28 suppresses HIV-1 expression and is upregulated upon activation by PHA.

(A) TRIM28 in TZM-bl cells was knocked down by siRNAs targeting the coding sequence and 3’UTR of TRIM28 mRNA. The luciferase from clarified lysates was quantitated and normalized to siNC. Data …

https://doi.org/10.7554/eLife.42426.004
Figure 1—figure supplement 2
Primary CD4+T cells populations’ identities.

(A–D) CD4+ T cells were stimulated with PHA for 2 days or left untreated. One part of PHA-activated CD4+ T cells was washed for removing PHA and cultured in RPMI1640 which contained low IL-2 for 1 …

https://doi.org/10.7554/eLife.42426.005
Figure 1—figure supplement 3
TRIM28 contributes to HIV-1 latency and is enriched on HIV-1 LTR.

(A–D) J-lat 6.3, 8.4, 9.2 and 15.4 cell lines were treated as in Figure 1B. The reactivation efficiency for each group was analyzed as in Figure 1C. Data represents mean ±SEM in triplicates. …

https://doi.org/10.7554/eLife.42426.006
Figure 2 with 1 supplement
Both RING and PHD domains E3 ligase activities are important for repressive epigenetic modifications.

(A) Schematic of wild-type TRIM28 and nine TRIM28 mutants. (B) Endogenous TRIM28 was knocked down by siRNA targeting 3’UTR in TZM-bl cells and re-expressed with wild type and different TRIM28 …

https://doi.org/10.7554/eLife.42426.007
Figure 2—figure supplement 1
Positive controls for ChIP.

(A–D) Data represented positive controls of siTRIM28-related ChIP. Endogenous TRIM28 in TZM-bl cells was knocked down by siRNA targeting 3’UTR of TRIM28 mRNA. Another three groups whose endogenous …

https://doi.org/10.7554/eLife.42426.008
Figure 3 with 1 supplement
TRIM28 SUMOylates many transcription factors and transferases.

(A) Schematic of global site-specific SUMO-MS. His-tagged SUMO mutants were co-overexpressed with UBC9 and TRIM28. The SUMOylated proteins were enriched by His-tag beads and separated by SDS-PAGE. …

https://doi.org/10.7554/eLife.42426.009
Figure 3—figure supplement 1
STRING, MCODE and GO analysis of proteins SUMOylated by TRIM28.

(A) Twelve subclusters, which were extracted by MCODE analysis, were separately plotted. The STRING and MCODE analyses were performed with the following settings: a significance threshold below 10−7,…

https://doi.org/10.7554/eLife.42426.010
Figure 4 with 1 supplement
SUMO4 suppresses HIV-1 expression and contributes to HIV-1 latency.

(A) SUMO4 in TZM-bl cells was knocked down by siRNAs targeting the coding sequence and 3’UTR of SUMO4 mRNA. The luciferase from clarified lysates was quantitated and normalized to siNC. Data …

https://doi.org/10.7554/eLife.42426.011
Figure 4—figure supplement 1
SUMO4 is uregulated upon activation by PHA and is the major paralog used by CDK9 and TRIM28.

(A) The knockdown efficiency of different SUMO4 siRNAs was confirmed by qPCR. Data represents mean ±SEM in triplicates. p-Vvalues were calculated by Student’s t-test. ***p<0.001. (B) The expression …

https://doi.org/10.7554/eLife.42426.012
Figure 5 with 1 supplement
CDK9 is SUMOylated by TRIM28.

(A) HA-tagged CDK9 was co-overexpressed with Flag-tagged SUMO4, UBC9 or TRIM28. CDK9 was IP with anti-HA-tag beads, followed by IB with anti-HA and –Flag antibodies. TRIM28, UBC9 and GAPDH in total …

https://doi.org/10.7554/eLife.42426.013
Figure 5—figure supplement 1
CDK9 is deSUMOylated by SENP3 and CDK9 SUMOylation occurs in primary CD4+T cells.

(A) siRNAs targeting six SENPs were transfected into TZM-bl cells. The luciferase from the clarified lysates of each group was quantitated and normalized to siNC. Data represents mean ±SEM in …

https://doi.org/10.7554/eLife.42426.014
Figure 6 with 1 supplement
TRIM28 co-localizes with SUMO4 and CDK9.

(A) cSTORM image of endogenous TRIM28 and SUMO4 in HEK293T cells. The first row: the original whole nucleus; the second row: one of the amplified region of the nucleus; the third row: the 3D-cSTORM …

https://doi.org/10.7554/eLife.42426.015
Figure 6—figure supplement 1
Amplified views of transformed co-localization.

(A–B) cSTORM-imaged protein molecules and complexes were transformed and displayed as in Figure 6C–D.Data represented amplified views of each transformed co-localization images. Green spots …

https://doi.org/10.7554/eLife.42426.016
Figure 7 with 1 supplement
The RING domain of TRIM28 plays a key role in binding to and SUMOylating CDK9.

(A) HA-tagged CDK9 was co-overexpressed with Flag-tagged full length TRIM28 or domain-truncated TRIM28 mutants. Flag-tagged proteins were IP, followed by IB with antibodies against HA-tag, Flag-tag …

https://doi.org/10.7554/eLife.42426.021
Figure 7—figure supplement 1
TRIM28 enriches CDK9 in the presence of RNase and SUMOylation status of TRIM28 mutants.

(A) Flag-tagged GFP and Flag-tagged TRIM28 were co-overexpressed with HA-tagged CDK9, respectively. Flag-tagged proteins were IP with anti-Flag beads. Flag-tagged proteins from another two similar …

https://doi.org/10.7554/eLife.42426.022
Figure 8 with 3 supplements
CDK9 function is reduced when SUMOylated by TRIM28.

(A–B) TRIM28-defective (sgTRIM28) J-Lat 10.6 cell line was generated by CRISPR-CAS9 technique. ATAC-Seq was conducted with sgNT and sgTRIM28 J-Lat 10.6 cell lines, as well as siNC and siTRIM28 …

https://doi.org/10.7554/eLife.42426.023
Figure 8—figure supplement 1
The distribution and GO analysis of increased accessible regions upon TRIM28 depletion.

(A–B) The distribution of increased accessible regions upon TRIM28 knockout in J-Lat 10.6 (A) and TRIM28 knockdown in TZM-bl (B). (C–D) GO analyses which included biological process analysis, …

https://doi.org/10.7554/eLife.42426.024
Figure 8—figure supplement 2
The COG analysis of increased accessible regions and the chromatin accessibility variations on target genes.

(A–B) Clusters of Orthologous Groups of proteins (COGs) analysis of increased accessible regions upon TRIM28 knockout in J-Lat 10.6 (A) and TRIM28 knockdown in TZM-bl (B). (C) The chromatin …

https://doi.org/10.7554/eLife.42426.025
Figure 8—figure supplement 3
Schematic of in vitro SUMOylation assay and CDK9 kinase assay.

(A) In vitro expressed and purified CDK9 was incubated with SUMO system components (SUMO4, E1, UBC9 and TRIM28) or left untreated. Five groups were set. Group 1 (G1): CDK9 only; Group 2 (G2): CDK9 …

https://doi.org/10.7554/eLife.42426.026
Figure 9 with 1 supplement
The Lys44, Lys56 and Lys68 residues of CDK9 are SUMOylated with SUMO4.

(A) Different HA-tagged CDK9 reversing mutation constructs or wild type CDK9 were co-overexpressed with SUMO4, UBC9 and TRIM28, respectively. CDK9 and CDK9 mutants were IP with anti-HA-tag beads …

https://doi.org/10.7554/eLife.42426.027
Figure 9—figure supplement 1
The Lys44, Lys56 and Lys68 residues of CDK9 are SUMOylated with SUMO4.

(A) Schematic of different CDK9 mutants. CDK9-K0R indicated that all lysines had been mutated to arginines. CDK9-KKR indicated that the third part of CDK9 had mutated all lysines to arginines. The …

https://doi.org/10.7554/eLife.42426.028
Figure 10 with 4 supplements
TRIM28 depletion reactivates latent HIV-1 in cells from HIV-1-infected individuals.

(A) shRNAs targeting luciferase and TRIM28 were packaged into lentiviruses and infected CD4+ T cells from HIV-1-infected individuals. Unstimulated CD4 +T cells were used as negative control (NC). …

https://doi.org/10.7554/eLife.42426.029
Figure 10—figure supplement 1
Cytotoxicity assay, cell viability assay and cell number counting used to evaluate the toxicity of targeting TRIM28.

(A) TRIM28 in Hela cells and HIV-1-infected CD4+ T cells was knocked down by siRNA targeting TRIM28. ShRNA and sgRNA lentiviruses targeting TRIM28 were used to knock down TRIM28 and knock out TRIM28 …

https://doi.org/10.7554/eLife.42426.030
Figure 10—figure supplement 2
Cell proliferation assay used to evaluate the toxicity of targeting TRIM28.

(A–D) The experiment setup was conducted as in Figure 10—figure supplement 1. On Day 0, cells from each group were stained with CFSE. The percentage and mean fluorescence intensity (MFI) of …

https://doi.org/10.7554/eLife.42426.031
Figure 10—figure supplement 3
TRIM28 depletion reactivates latent HIV-1 in cells from HIV-1-infected individuals.

(A) Schematic of experiments on primary CD4 +T cells from HIV-1-infected individuals. (B) The knockdown efficiency of shTRIM28 in HIV-1-infected CD4+ T cells. (C) The knockdown efficiency of …

https://doi.org/10.7554/eLife.42426.032
Figure 10—figure supplement 4
SUMO4 depletion reactivates latent HIV-1 in cells from HIV-1-infected individuals.

(A) SiRNAs targeting NC and SUMO4 were nucleofected into CD4+ T cells from HIV-1-infected individuals. Unstimulated CD4+ T cells were used as Mock. Stimulation with αCD3/αCD28/IL-2 was used as …

https://doi.org/10.7554/eLife.42426.033
Author response image 1
Attenuated Tat Protein Tat-R5M4 can reactivate more genetically-diversified HIV-1.

(Geng et al., 2016, Molecular Therapy, PMID: 27434587).

Author response image 2
Different LRAs reactivate genetically-diversified HIV-1 at different integration sites.

Videos

Video 1
3D-cSTORM movie of the 3D co-localization of TRIM28 with SUMO4.

Green spots indicate TRIM28. Red spots indicate SUMO4.

https://doi.org/10.7554/eLife.42426.017
Video 2
3D-cSTORM movie of the 3D co-localization of TRIM28 with CDK9.

Green spots indicate TRIM28. Red spots indicate CDK9.

https://doi.org/10.7554/eLife.42426.018
Video 3
Transformed 3D-cSTORM movie of the 3D co-localization of TRIM28 with SUMO4.

Green spots indicate TRIM28. Red spots indicate SUMO4.

https://doi.org/10.7554/eLife.42426.019
Video 4
Transformed 3D-cSTORM movie of the 3D co-localization of TRIM28 with CDK9.

Green spots indicate TRIM28. Red spots indicate CDK9.

https://doi.org/10.7554/eLife.42426.020

Tables

Key resources table
Reagent type
(species) or resource
DesignationSource or
reference
IdentifiersAdditional
information
Strain, strain
background
(Escherichia coli)
E.coli DH5α: F-,
φ 80dlacZ ΔM15,
Δ(lacZYA -argF )U169, deoR ,
recA1 , endA1 , hsdR17
(rK-, mK+), phoA, supE44 ,
λ-, thi −1, gyrA96 , relA1
TakaraCat#9057
Strain, strain
background
(Escherichia coli)
E. coli HB101: F-,
hsdS20(rB-, mB-),
recA13, ara-14, proA2, lacY1,
galK2, rpsL20 (str), xyl-5,
mtl-1,supE44, leuB6, thi-1.
TakaraCat#9051
Strain, strain
background
(Escherichia coli)
E.coli BL21: F-, ompT,
hsdSB (rB-mB-),
gal, dcm
TakaraCat#9126
Strain, strain
background
(Escherichia coli)
E.coli Stbl3: F-, mcrB,
mrr, hsdS20 (rB-, mB-),
recA13, supE44, ara-14,
galK2, lacY1, proA2, rpsL20
(StrR), xyl-5, λ- leu, mtl-1
ThermoFisherCat#C7381201
Cell line
(Homo sapiens)
HEK293TATCCCRL-3216;
RRID: CVCL_0063
female
Cell line
(Homo sapiens)
HeLaATCCCCL-2;
RRID: CVCL_0030
female
Cell line
(Homo sapiens)
TZM-blNIH AIDS
Reagent Program
Cat#8129female
Cell line
(Homo sapiens)
J-Lat 6.3PMID: 12682019NIH AIDS Reagent
Program Cat#9846
Dr. Eric Verdin
(The Buck Institute
for Research on
Aging, Novato,
CA, USA)
Cell line
(Homo sapiens)
J-Lat 8.4PMID: 12682019NIH AIDS Reagent
Program Cat#9847
Dr. Eric Verdin
(The Buck Institute for
Research on Aging,
Novato, CA, USA)
Cell line
(Homo sapiens)
J-Lat 9.2PMID: 12682019NIH AIDS Reagent
Program Cat#9848
Dr. Eric Verdin
(The Buck Institute for
Research on Aging,
Novato, CA, USA)
Cell line
(Homo sapiens)
J-Lat 10.6PMID: 12682019NIH AIDS Reagent
Program Cat#9849
Dr. Eric Verdin
(The Buck Institute
for Research on
Aging, Novato, CA, USA)
Cell line
(Homo sapiens)
J-Lat 15.4PMID: 12682019NIH AIDS Reagent
Program Cat#9850
Dr. Eric Verdin
(The Buck Institute
for Research on Aging,
Novato, CA, USA)
Biological sample
(Homo sapiens)
Blood samples
from healthy individuals
Guangzhou Blood
Center, Guangzhou
http://www.gzbc.org/
Biological sample
(Homo sapiens)
Blood samples
from HIV-1-
infected individuals
Department of
Infectious Diseases, Guangzhou
8th People’s
Hospital, Guangzhou
http://gz8h.com.cn/
AntibodyMouse Monoclonal
anti-TRIM28 Antibody
ProteintechCat#66630–1-Ig;
RRID: AB_2732886;
Lot#10006062
(1:1000)
AntibodyRabbit Polyclonal
anti-TRIM28 Antibody
ProteintechCat#15202–1-AP;
RRID: AB_2209890;
Lot#00051172
(1:1000)
AntibodyRabbit Polyclonal
Anti-Histone H3
(tri methyl K4) Antibody
AbcamCat#ab8580;
RRID: AB_306649;
Lot#GR273043-3
Use 2 µg for 25 µg
of chromatin
AntibodyRabbit Polyclonal
Anti-Histone H3 (acetyl
K9) Antibody
AbcamCat#ab4441;
RRID: AB_2118292;
Lot#GR270585-1
Use 2 µg for 25 µg
of chromatin
AntibodyMouse Monoclonal
Anti-Histone H3 (tri
methyl K27) Antibody
AbcamCat#ab6002;
Lot#GR275911-3
Use 5 µg for 25 µg
of chromatin
AntibodyNormal Rabbit
Anti-IgG Antibody
CSTCat#2729;
RRID: AB_1031062
Use 1 µg for 25 µg
of chromatin
AntibodyRabbit Polyclonal
Anti-UBE2I Antibody
AbclonalCat#A2193;
Lot#45473
(1:1000)
AntibodyRabbit Polyclonal
Anti-UBA2 Antibody
AbclonalCat#A4363(1:1000)
AntibodyRabbit Polyclonal
Anti-SAE1 Antibody
ProteintechCat#10229–1-AP;
RRID: AB_2182917;
Lot#00040591
(1:1000)
AntibodyRabbit Monoclonal
Anti-SUMO4 Antibody
AbcamCat#ab126606;
RRID: AB_11128131;
Lot#GR851138-12
(1:1000)
AntibodyRabbit Monoclonal
Anti-CDK9 (C12F7) Antibody
CSTCat#2316; Lot#6(1:1000)
AntibodyRabbit Polyclonal
Anti-SENP3 Antibody
ProteintechCat#17659–1-AP;
RRID: AB_2301618;
Lot#00025621
(1:1000)
AntibodyRabbit Polyclonal Anti-RNA
polymerase II CTD repeat
YSPTSPS (phosphor-Ser2)
Antibody
AbcamCat#ab5095;
RRID: AB_304749;
Lot#GR278215-1
Use 2 µg for 25 µg
of chromatin
AntibodyMouse Monoclonal
Anti-Histone H3 (di methyl
K9) Antibody
AbcamCat#ab1220;
RRID: AB_449854
Use 4 µg for 25 µg
of chromatin
AntibodyRabbit Polyclonal
Anti-Histone H3 (tri
methyl K9) Antibody
AbcamCat#ab8898;
RRID: AB_306848
Use 4 µg for 25 µg
of chromatin
AntibodyDonkey Anti-Mouse
IgG H and L (Alexa Fluor
647) Antibody
AbcamCat#ab150107;
Lot#GR311164-3
(1:200)
AntibodyDonkey Anti-Rabbit IgG
H and L (Alexa Fluor 647)
Antibody
AbcamCat#ab150075;
Lot#GR3174006-4
(1:200)
AntibodyDonkey Anti-Rabbit IgG
(H + L), Highly Cross-
Adsorbed, CF 568 Dye
Conjugates, Single Label
for STORM
BiotiumCat#20803–500 μl;
Lot#17C0626
(1:200)
AntibodyDonkey Anti-Mouse IgG
(H + L), Highly Cross-
Adsorbed, CF 568 Dye
Conjugates, Single Label
for STORM
BiotiumCat#20802–500 μl;
Lot#17C1004
(1:200)
AntibodyRabbit Anti-DDDDK Tag
Polyclonal Antibody,
Unconjugated
MBLCat#PM020;
RRID: AB_591224;
Lot#026
(1:1000)
AntibodyMouse Monoclonal
Anti-HA-Tag Antibody
MBLCat#M180-3;
RRID: AB_10951811;
Lot#008
(1:10000)
AntibodyMouse Monoclonal
Anti-His-Tag Antibody
ProteintechCat#66005–1-Ig;
RRID: AB_11232599;
Lot#00083246
(1:1000)
AntibodyRabbit Polyclonal
Anti-GAPDH Antibody
ProteintechCat#10494–1-AP;
RRID: AB_2263076;
Lot#00039889
(1:10000)
AntibodyIRDye 680RD Goat
anti-Mouse IgG (H + L),
0.5 mg Antibody
LI-COR BiosciencesCat#926–68070;
RRID: AB_10956588;
Lot#C70613-15
(1:10000)
AntibodyIRDye 800CW Goat
Anti-Rabbit IgG,
Conjugated Antibody
LI-COR BiosciencesCat#926–32211;
RRID: AB_621843;
Lot#C70620-05
(1:10000)
AntibodyPerCP-Cy 5.5
Mouse Anti-Human
CD45RO
BD BiosciencesCat#560607;
RRID: AB_1727500;
Lot#5338941
(1:1000)
AntibodyAPC/Cy7 anti-
human CD45RA
BioLegendCat#304127;
RRID: AB_10708419;
Lot#B164612
(1:1000)
AntibodyAnti-Human
CD69 PE-Cy7
ThermoFisherCat#25-0699-42;
RRID: AB_1548714;
Lot#E10154-1635
(1:1000)
AntibodyAnti-Human CD62L
PE-Cyanine7
ThermoFisherCat#25-0629-42;
RRID: AB_1257142;
Lot#4291471
(1:1000)
AntibodyAnti-Human CD4 FITCThermoFisherCat#11-0048-42;
RRID: AB_1633390;
Lot#E10526-1631
(1:1000)
AntibodyPE-Cy5 Conjugated
Amti-human CD25 (IL-2R)
ThermoFisherCat#15-0259-42;
RRID: AB_1944361;
Lot#E11289-102
(1:1000)
Recombinant
DNA reagent
VSV-G glycoprotein-
expression vector
PMID: 9306402Addgene Plasmid
#12259
Dr. Didier Trono
(School of Life Sciences,
Ecole Polytechnique
Fédérale de
Lausanne,
Lausanne, Switzerland)
Recombinant
DNA reagent
Lentiviral packaging
construct pCMVΔR8.2
PMID: 9306402Addgene Plasmid
#12263
Dr. Didier Trono
(School of Life Sciences,
Ecole Polytechnique
Fédérale de
Lausanne,
Lausanne, Switzerland)
Recombinant
DNA reagent
Lentiviral construct
vector pLKO.3G-RFP
This paperN/AProgenitor: pLKO.3G
Recombinant
DNA reagent
Lentiviral construct
vector lentiCRISPRv2
PMID: 25075903Addgene Plasmid
#52961
Dr. Feng Zhang
(Broad Institute of MIT
and Harvard)
Recombinant
DNA reagent
Plasmid: 10His-
SUMO1-Q92R
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmid: 10His
-SUMO2-Q88R
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmid: 10His-
SUMO4-Q88R
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmid: 3HA-
CDK9-KKR
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmid: 3HA-
CDK9-RRK
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmid: 3HA
-CDK9-RKK
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmid: 3HA-
CDK9-KRR
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmid: 3HA-
CDK9-KRK
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmid: 3HA-
CDK9-RKR
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmid: 3HA-
CDK9-K0R
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Recombinant
DNA reagent
Plasmids:
3HA-CDK9-K0R-RXK
(X represent mutation
position)
This paperSupplementary file 3Progenitor: pcDNA3.1(+)
Sequence-
based reagent
siRNA LibraryRiboBioSupplementary file 1;
http://www.ribobio.com/
Sequence-
based reagent
ChIP-qPCR PrimersThis paperSupplementary file 2
Sequence-
based reagent
siRNA targeting
TRIM28 3’UTR:5’-
GCTCTGTTCTCTGTCCTGT-3’
RiboBiohttp://www.ribobio.com/
Sequence-
based reagent
shRNA targeting
Luciferase:5’-
ACCGCCTGAAGTCTCTGATTAA-3’
PMID: 29863470N/A
Sequence-
based reagent
shRNA targeting
TRIM28 CDS:5’-
CCAGCCAACCAGCGGAAATGTGA-3’
PMID: 18082607N/A
Sequence-
based reagent
sgRNA targeting
Dummyguide
(sgNT):5’-
ACGGAGGCTAAGCGTCGCAA-3’
PMID: 25075903N/ADr. Feng Zhang
(Broad Institute
of MIT and Harvard)
Sequence-
based reagent
sgRNA targeting
TRIM28
CDS:5’-
CACCGATTGAGCTGGCAGTCTCGGC-3’
PMID: 25075903N/ADr. Feng Zhang
(Broad Institute
of MIT and Harvard)
Sequence-
based reagent
β-Actin qPCR
Forward Primer:5’-
GCATGGAGTCCTGTGGCA-3’
PMID: 27291871N/A
Sequence-
based reagent
β-Actin qPCR
Reverse Primer:5’-
CAGGAGGAGCAATGATCTTGA-3’
PMID: 27291871N/A
Sequence-
based reagent
TRIM28 qPCR
Forward Primer:5’-
CTACTCAAGTGCAGAGCCCC-3’
This paperN/A
Sequence-
based reagent
TRIM28 qPCR
Reverse Primer:5’-
GGGAAGACCTTGAAGACGGG-3’
This paperN/A
Sequence-
based reagent
HIVTotRNA Forward
Primer:5’-
CTGGCTAACTAGGGAACCCACTGCT-3’
PMID: 27291871N/A
Sequence-
based reagent
HIVTotRNA Reverse
Primer:5’-
GCTTCAGCAAGCCGAGTCCTGCGTC-3’
PMID: 27535056N/A
Sequence-
based reagent
1 st round Nest PCR
Forward Primer
(E00):5’-
TAGAAAGAGCAGAAGACAGTGGCAATGA-3’
PMID: 27434587N/A
Sequence-
based reagent
1 st round Nest PCR
Reverse Primer (ES8B):5’-
CACTTCTCCAATTGTCCCTCA-3’
PMID: 27434587N/A
Sequence-
based reagent
2nd round Nest PCR
Forward Primer
(E20):5’-
GGGCCACACATGCCTGTGTACCCACAG-3’
PMID: 27434587N/A
Sequence-
based reagent
2nd round Nest PCR
Reverse Primer (E115):5’-
AGAAAAATTCCCCTCCACAATTAA-3’
PMID: 27434587N/A
Chemical
compound, drug
(+)-JQ-1SelleckchemCat#S7110
Chemical
compound, drug
Vorinostat (SAHA)SelleckchemCat#S1047
Chemical
compound, drug
Formaldehyde solutionSigma-AldrichCat#F8775-25ML
Chemical
compound, drug
TRIzol ReagentThermoFisherCat#15596018
Chemical
compound, drug
4',6-Diamidino-2-
Phenylindole,
Dihydrochloride (DAPI)
ThermoFisherCat#D1306
Chemical
compound, drug
Cysteamine (MEA)Sigma-AldrichCat#30070–10G
Chemical
compound, drug
Glucose Oxidase from
Aspergillus niger, Type
VII, lyophilized powder,
≥100,000 units/g solid
Sigma-AldrichCat#G2133-250KU
Chemical
compound, drug
Catalase from bovine liver
, lyophilized powder,
≥10,000 units/mg protein
Sigma-AldrichCat#C40-1G
Chemical
compound, drug
Sodium
borohydride (NaBH4)
Sigma-AldrichCat#213462–25G
Chemical
compound, drug
16% Paraformaldehyde
(formaldehyde) Aqueous
Solution
Electron Microscopy SciencesCat#15710
Chemical
compound, drug
8% Glutaraldehyde
Aqueous Solution
Electron Microscopy SciencesCat#16019
Chemical
compound, drug
Normal Donkey
Serum (NDS)
Jackson ImmunoResearchCat#017-000-121
Chemical
compound, drug
Triton X-100Sigma-AldrichCat#T8787-50ML
Chemical
compound, drug
Protease Inhibitor
Cocktail (PIC)
Sigma-AldrichCat#P8340-1ML
Chemical
compound, drug
N-Ethylmaleimide (NEM)SelleckchemCat#S3692
Chemical
compound, drug
EZview Red
Anti-HA Affinity Gel
Sigma-AldrichCat#E6779-1ML
Chemical
compound, drug
EZview Red Anti-
FLAG M2 Affinity Gel
Sigma-AldrichCat#F2426-1ML
Chemical
compound, drug
Anti-His-tag AgaroseAbcamCat#ab1231
Chemical
compound, drug
Penicillin-Streptomycin,
Liquid
ThermoFisherCat#15140122
Chemical
compound, drug
L-Glutamine,
200 mM Solution
ThermoFisherCat#25030081
Chemical
compound, drug
Fetal Bovine Serum (FBS)ThermoFisherCat#10270–106
Chemical
compound, drug
Phytohemagglutinin
-M (PHA-M)
Sigma-AldrichCat#11082132001
Peptide,
recombinant protein
Recombinant
Human TNF-α
PeproTechCat#300-01A
Peptide,
recombinant protein
Recombinant
Human IL-2
R&D SystemsCat#202-IL-500
Peptide,
recombinant protein
Recombinant Human
SUMO Activating
Enzyme E1 (SAE1/UBA2)
R&D SystemsCat#E-315
Peptide,
recombinant protein
Recombinant
Human UBE2I/Ubc9
R&D SystemsCat#E2-645-100
Peptide,
recombinant protein
Recombinant
Human CDK9
AbcamCat#ab85603
Peptide,
recombinant protein
Recombinant
Human SUMO4
This paperN/A
Peptide,
recombinant protein
Recombinant
Human TRIM28
AbcamCat#ab131899
Commercial
assay or kit
SUMO Conjugation
Reaction Buffer Kit
R&D SystemsCat#SK-15
Commercial
assay or kit
Human Lymphocyte
Separation Kit
TBDsciencesCat#LTS1077
Commercial
assay or kit
BD IMag Human
CD4 + T Lymphocyte
Enrichment Set-DM
BD BiosciencesCat#557939
Commercial
assay or kit
Luciferase Assay SystemPromegaCat#E4550
Commercial
assay or kit
SimpleChIP Enzymatic
Chromatin IP Kit (Magnetic
Beads)
CSTCat#9003S
Commercial
assay or kit
TruePrep DNA Library
Prep Kit V2 for Illumina
VazymeCat#TD501
Commercial
assay or kit
HIV-1 p24 ELISA KitAbcamCat#ab218268
Commercial
assay or kit
ProteoSilver Plus
Silver Stain Kit
Sigma-AldrichCat#PROTSIL2
-1KT
Commercial
assay or kit
CDK9/CyclinK Kinase
Enzyme System
PromegaCat#V4104
Commercial
assay or kit
ADP-GloTM
Kinase Assay
PromegaCat#V6903
Commercial
assay or kit
Cell Counting Kit-8DojindoCat#CK04;
Lot#KT793
Commercial
assay or kit
Zombie Violet
Fixable Viability Kit
BioLegendCat#423113;
Lot#B256957
Commercial
assay or kit
CellTrace CFSE Cell
Proliferation Kit -
For Flow Cytometry
ThermoFisherCat#C34554
Software,
algorithm
Prism 5GraphPadhttps://www.graphpad.com/scientific-software/prism/
Software,
algorithm
MEGA 7MEGAhttps://www.megasoftware.net/
Software,
algorithm
Cytoscape (3.6.1)Cytoscape
Consortium
RRID:SCR_015784
Software,
algorithm
STRINGCytoscape
Consortium
RRID:SCR_005223
Software,
algorithm
MCODECytoscape
Consortium
RRID:SCR_015828
Software,
algorithm
BD LSRFortessa cell analyzerBD Bioscienceshttp://www.bdbiosciences.com/in/instruments/lsr/index.jsp
Software,
algorithm
FlowJo V10Tree Starhttps://www.flowjo.com/
Software,
algorithm
Odyssey
CLX Imager
LI-COR
Biosciences
https://www.licor.com/bio/products/imaging_systems/odyssey/
Software,
algorithm
Image Studio
Lite Ver 4.0
LI-COR Bioscienceshttps://www.licor.com/bio/products/software/image_studio_lite/
Software,
algorithm
CFX ManagerBIO-RADhttp://www.bio-rad.com/
Software,
algorithm
GloMax 96 Microplate
Luminometer
Software
(version 1.9.3)
Promegahttps://www.promega.com/resources/software-firmware/detection-instruments-software/promega-branded-instruments/glomax-96-microplate-luminometer/
Software,
algorithm
SkanIt SW for
Microplate Readers
ThermoFisherhttps://www.thermofisher.com/order/catalog/product/5187139?SID=srch-srp-5187139
Software,
algorithm
NIS-Elements
Advanced Research
microscope
imaging
software
Nikonhttps://www.nikoninstruments.com/Products/Software
Software,
algorithm
PyMOLSchrödingerRRID:SCR_000305
Software,
algorithm
FastQCBabraham
Institute
RRID:SCR_014583
Software,
algorithm
Hisat2PMID: 25751142RRID:SCR_015530
Software,
algorithm
DEGseqBioconductorRRID:SCR_008480
Software
, algorithm
gplotsR Foundationhttps://www.rdocumentation.org/packages/gplots/versions/3.0.1
Software,
algorithm
Bowtie2PMID: 22388286RRID:SCR_016368
Software,
algorithm
SamtoolsPMID: 19505943RRID:SCR_002105
Software,
algorithm
igvtoolsBroad Institutehttps://software.broadinstitute.org/software/igv/igvtools
Software,
algorithm
Imaris
(Version 9.2)
BITPLANERRID:SCR_007370

Additional files

Supplementary file 1

SiRNA library used to screen HIV-1 suppression and latency contributors.

SiRNA library, which targeted several cellular pathways within the nucleus including chromatin binding, epigenetic modification, chromatin remodeling, ubiquitination, SUMOylation, and chromosome organization, was transfected into TZM-bl cells respectively. Both library and negative control siRNA were synthesized from RiboBio (Guangzhou, China).

https://doi.org/10.7554/eLife.42426.034
Supplementary file 2

ChIP primers used to explore the enrichment of target proteins on HIV-1.

Eight ChIP-qPCR primers targeting integrated HIV-1 reporter provirus in TZM-bl cell line were designed. G5: Cellular DNA and viral 5’LTR junction; A: Nucleosome 0 assembly site; B: Nucleosome free region; C: Nucleosome one assembly site; V5: Viral 5’LTR and gag leader sequence junction; L: Luciferase region; V3: Viral poly purine tract and 3’LTR junction; G3: Viral 3’LTR and cellular DNA junction. For ChIP-qPCR conducted in J-Lat 10.6, G5’ represented cellular DNA and viral 5’LTR junction; E represented envelop; G3’ represented viral 3’LTR and cellular DNA junction; A, B, C, V5 and V3 represented as in TZM-bl cell lines.

https://doi.org/10.7554/eLife.42426.035
Supplementary file 3

SUMO mutants used in SUMO-MS and CDK9 mutants used to identify SUMOylation sites.

The sequences of SUMO1-Q92R, SUMO2-Q88R and SUMO4-Q88R mutants, which mimicked yeast SUMO Smt3 to enable efficient identification of SUMO-acceptor lysines by MS, were represented below. Table also listed the major CDK9 mutants used in reversing mutation assay to identify SUMOylation sites on CDK9. All the sequences were verified by Sanger Sequencing to insure the accuracy.

https://doi.org/10.7554/eLife.42426.036
Supplementary file 4

SUMOylated proteins at significance threshold below 10−7.

Table showed 1,329 SUMOylated proteins identified in global site-specific SUMO-MS at significance threshold below 10−7.

https://doi.org/10.7554/eLife.42426.037
Supplementary file 5

Subclusters clustered by MCODE analysis.

Twelve highly interconnected functional subclusters were extracted from STRING network by MCODE analysis. Interconnectivity scores ranged from 14 to 96. Genes from each cluster were listed.

https://doi.org/10.7554/eLife.42426.038
Supplementary file 6

Go analysis of SUMOylated proteins.

Biological process analysis, molecular function analysis, cellular component analysis and protein class analysis were conducted for the identified SUMOylated proteins. Table showed gene numbers and percentages of each group.

https://doi.org/10.7554/eLife.42426.039
Supplementary file 7

SUMOylated proteins at significance threshold below 10−8.

Table showed 715 SUMOylated proteins identified in global site-specific SUMO-MS at significance threshold below 10−8.

https://doi.org/10.7554/eLife.42426.040
Transparent reporting form
https://doi.org/10.7554/eLife.42426.041

Download links