A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta

  1. Xiyue Wang
  2. Xiaolin Chou
  3. Bo Peng
  4. Li Shen
  5. Junxiang J Huang
  6. Li I Zhang
  7. Huizhong W Tao  Is a corresponding author
  1. University of Southern California, United States

Abstract

The ability to adjust defensive behavior is critical for animal survival in dynamic environments. However, neural circuits underlying the modulation of innate defensive behavior remain not well-understood. In particular, environmental threats are commonly associated with cues of multiple sensory modalities. It remains to be investigated how these modalities interact to shape defense behavior. In this study, we report that auditory-induced defensive flight can be facilitated by somatosensory input in mice. This cross-modality modulation of defensive behavior is mediated by the projection from the primary somatosensory cortex (SSp) to the ventral sector of zona incerta (ZIv). Parvalbumin-positive neurons in ZIv, receiving direct input from SSp, mediate the enhancement of the flight behavior via their projections to the medial posterior complex of thalamus (POm). Thus, defensive flight behavior can be enhanced in a somatosensory context-dependent manner via recruiting PV neurons in ZIv, which may be important for increasing survival of prey animals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The data for each figure have been provided as source data files and the code used for data analysis can be found at https://github.com/xiaolinchou/flight-speed-calculation.

Article and author information

Author details

  1. Xiyue Wang

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5805-0778
  2. Xiaolin Chou

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo Peng

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Shen

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Junxiang J Huang

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Li I Zhang

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Huizhong W Tao

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    For correspondence
    htao@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3660-0513

Funding

National Institutes of Health (EY019049)

  • Huizhong W Tao

Karl Kirchgessner Foundation

  • Huizhong W Tao

National Institutes of Health (EY022478)

  • Huizhong W Tao

National Institutes of Health (R01DC008983)

  • Li I Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures used in this study were approved by the Animal Care and Use Committee at the University of Southern California under the protocol 20719.

Copyright

© 2019, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,402
    views
  • 449
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiyue Wang
  2. Xiaolin Chou
  3. Bo Peng
  4. Li Shen
  5. Junxiang J Huang
  6. Li I Zhang
  7. Huizhong W Tao
(2019)
A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta
eLife 8:e42728.
https://doi.org/10.7554/eLife.42728

Share this article

https://doi.org/10.7554/eLife.42728

Further reading

    1. Neuroscience
    Masahiro Takigawa, Marta Huelin Gorriz ... Daniel Bendor
    Research Article

    During rest and sleep, memory traces replay in the brain. The dialogue between brain regions during replay is thought to stabilize labile memory traces for long-term storage. However, because replay is an internally-driven, spontaneous phenomenon, it does not have a ground truth - an external reference that can validate whether a memory has truly been replayed. Instead, replay detection is based on the similarity between the sequential neural activity comprising the replay event and the corresponding template of neural activity generated during active locomotion. If the statistical likelihood of observing such a match by chance is sufficiently low, the candidate replay event is inferred to be replaying that specific memory. However, without the ability to evaluate whether replay detection methods are successfully detecting true events and correctly rejecting non-events, the evaluation and comparison of different replay methods is challenging. To circumvent this problem, we present a new framework for evaluating replay, tested using hippocampal neural recordings from rats exploring two novel linear tracks. Using this two-track paradigm, our framework selects replay events based on their temporal fidelity (sequence-based detection), and evaluates the detection performance using each event's track discriminability, where sequenceless decoding across both tracks is used to quantify whether the track replaying is also the most likely track being reactivated.

    1. Neuroscience
    Nicolas Langer, Maurice Weber ... Ce Zhang
    Tools and Resources

    Memory deficits are a hallmark of many different neurological and psychiatric conditions. The Rey–Osterrieth complex figure (ROCF) is the state-of-the-art assessment tool for neuropsychologists across the globe to assess the degree of non-verbal visual memory deterioration. To obtain a score, a trained clinician inspects a patient’s ROCF drawing and quantifies deviations from the original figure. This manual procedure is time-consuming, slow and scores vary depending on the clinician’s experience, motivation, and tiredness. Here, we leverage novel deep learning architectures to automatize the rating of memory deficits. For this, we collected more than 20k hand-drawn ROCF drawings from patients with various neurological and psychiatric disorders as well as healthy participants. Unbiased ground truth ROCF scores were obtained from crowdsourced human intelligence. This dataset was used to train and evaluate a multihead convolutional neural network. The model performs highly unbiased as it yielded predictions very close to the ground truth and the error was similarly distributed around zero. The neural network outperforms both online raters and clinicians. The scoring system can reliably identify and accurately score individual figure elements in previously unseen ROCF drawings, which facilitates explainability of the AI-scoring system. To ensure generalizability and clinical utility, the model performance was successfully replicated in a large independent prospective validation study that was pre-registered prior to data collection. Our AI-powered scoring system provides healthcare institutions worldwide with a digital tool to assess objectively, reliably, and time-efficiently the performance in the ROCF test from hand-drawn images.