A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta

  1. Xiyue Wang
  2. Xiaolin Chou
  3. Bo Peng
  4. Li Shen
  5. Junxiang J Huang
  6. Li I Zhang
  7. Huizhong W Tao  Is a corresponding author
  1. University of Southern California, United States

Abstract

The ability to adjust defensive behavior is critical for animal survival in dynamic environments. However, neural circuits underlying the modulation of innate defensive behavior remain not well-understood. In particular, environmental threats are commonly associated with cues of multiple sensory modalities. It remains to be investigated how these modalities interact to shape defense behavior. In this study, we report that auditory-induced defensive flight can be facilitated by somatosensory input in mice. This cross-modality modulation of defensive behavior is mediated by the projection from the primary somatosensory cortex (SSp) to the ventral sector of zona incerta (ZIv). Parvalbumin-positive neurons in ZIv, receiving direct input from SSp, mediate the enhancement of the flight behavior via their projections to the medial posterior complex of thalamus (POm). Thus, defensive flight behavior can be enhanced in a somatosensory context-dependent manner via recruiting PV neurons in ZIv, which may be important for increasing survival of prey animals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. The data for each figure have been provided as source data files and the code used for data analysis can be found at https://github.com/xiaolinchou/flight-speed-calculation.

Article and author information

Author details

  1. Xiyue Wang

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5805-0778
  2. Xiaolin Chou

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Bo Peng

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Li Shen

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Junxiang J Huang

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Li I Zhang

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Huizhong W Tao

    Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, United States
    For correspondence
    htao@usc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3660-0513

Funding

National Institutes of Health (EY019049)

  • Huizhong W Tao

Karl Kirchgessner Foundation

  • Huizhong W Tao

National Institutes of Health (EY022478)

  • Huizhong W Tao

National Institutes of Health (R01DC008983)

  • Li I Zhang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental procedures used in this study were approved by the Animal Care and Use Committee at the University of Southern California under the protocol 20719.

Copyright

© 2019, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,419
    views
  • 451
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiyue Wang
  2. Xiaolin Chou
  3. Bo Peng
  4. Li Shen
  5. Junxiang J Huang
  6. Li I Zhang
  7. Huizhong W Tao
(2019)
A cross-modality enhancement of defensive flight via parvalbumin neurons in zona incerta
eLife 8:e42728.
https://doi.org/10.7554/eLife.42728

Share this article

https://doi.org/10.7554/eLife.42728

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Timothy J Abreo, Emma C Thompson ... Edward C Cooper
    Research Article

    KCNQ2 variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and KCNQ2 G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path. Co-expression with G256W dominantly suppressed conduction by wild-type subunits in heterologous cells. Ezogabine partly reversed this suppression. Kcnq2G256W/+ mice have epilepsy leading to premature deaths. Hippocampal CA1 pyramidal cells from G256W/+ brain slices showed hyperexcitability. G256W/+ pyramidal cell KCNQ2 and KCNQ3 immunolabeling was significantly shifted from axon initial segments to neuronal somata. Despite normal mRNA levels, G256W/+ mouse KCNQ2 protein levels were reduced by about 50%. Our findings indicate that G256W pathogenicity results from multiplicative effects, including reductions in intrinsic conduction, subcellular targeting, and protein stability. These studies provide evidence for an unexpected and novel role for the KCNQ2 pore turret and introduce a valid animal model of KCNQ2 encephalopathy. Our results, spanning structure to behavior, may be broadly applicable because the majority of KCNQ2 encephalopathy patients share variants near the selectivity filter.

    1. Neuroscience
    Ziyue Zhou, Su Young Han ... Allan E Herbison
    Research Article

    One in ten women in their reproductive age suffer from polycystic ovary syndrome (PCOS) that, alongside subfertility and hyperandrogenism, typically presents with increased luteinizing hormone (LH) pulsatility. As such, it is suspected that the arcuate kisspeptin (ARNKISS) neurons that represent the GnRH pulse generator are dysfunctional in PCOS. We used here in vivo GCaMP fiber photometry and other approaches to examine the behavior of the GnRH pulse generator in two mouse models of PCOS. We began with the peripubertal androgen (PPA) mouse model of PCOS but found that it had a reduction in the frequency of ARNKISS neuron synchronization events (SEs) that drive LH pulses. Examining the prenatal androgen (PNA) model of PCOS, we observed highly variable patterns of pulse generator activity with no significant differences detected in ARNKISS neuron SEs, pulsatile LH secretion, or serum testosterone, estradiol, and progesterone concentrations. However, a machine learning approach identified that the ARNKISS neurons of acyclic PNA mice continued to exhibit cyclical patterns of activity similar to that of normal mice. The frequency of ARNKISS neuron SEs was significantly increased in algorithm-identified ‘diestrous stage’ PNA mice compared to controls. In addition, ARNKISS neurons exhibited reduced feedback suppression to progesterone in PNA mice and their gonadotrophs were also less sensitive to GnRH. These observations demonstrate the importance of understanding GnRH pulse generator activity in mouse models of PCOS. The existence of cyclical GnRH pulse generator activity in the acyclic PNA mouse indicates the presence of a complex phenotype with deficits at multiple levels of the hypothalamo-pituitary-gonadal axis.