Neuronal reactivation during post-learning sleep consolidates long-term memory in Drosophila

  1. Ugur Dag
  2. Zhengchang Lei
  3. Jasmine Q Le
  4. Allan Wong
  5. Daniel Bushey
  6. Krystyna Keleman  Is a corresponding author
  1. Janelia Research Campus, Howard Hughes Medical Institute, United States

Abstract

Animals consolidate some, but not all, learning experiences into long-term memory. Across the animal kingdom, sleep has been found to have a beneficial effect on the consolidation of recently formed memories into long-term storage. However, the underlying mechanisms of sleep dependent memory consolidation are poorly understood. Here, we show that consolidation of courtship long-term memory in Drosophila is mediated by reactivation during sleep of dopaminergic neurons that were earlier involved in memory acquisition. We identify specific fan-shaped body neurons that induce sleep after the learning experience and activate dopaminergic neurons for memory consolidation. Thus, we provide a direct link between sleep, neuronal reactivation of dopaminergic neurons, and memory consolidation.

Data availability

Source data files have been provided for Figure 1-figure supplement 1 and 2, Figure 2, Figure 2-figure supplement 1 and 2 and Figure 5 and Figure 5-figure supplement

Article and author information

Author details

  1. Ugur Dag

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6937-5722
  2. Zhengchang Lei

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6475-5010
  3. Jasmine Q Le

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4159-8830
  4. Allan Wong

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8492-2162
  5. Daniel Bushey

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Krystyna Keleman

    Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
    For correspondence
    kelemank@janelia.hhmi.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2044-1981

Funding

Howard Hughes Medical Institute (N/A)

  • Krystyna Keleman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Dag et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,559
    views
  • 1,030
    downloads
  • 71
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ugur Dag
  2. Zhengchang Lei
  3. Jasmine Q Le
  4. Allan Wong
  5. Daniel Bushey
  6. Krystyna Keleman
(2019)
Neuronal reactivation during post-learning sleep consolidates long-term memory in Drosophila
eLife 8:e42786.
https://doi.org/10.7554/eLife.42786

Share this article

https://doi.org/10.7554/eLife.42786