Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine

  1. Zhiling Li
  2. Marlene M Hao
  3. Chris Van den Haute
  4. Veerle Baekelandt
  5. Werend Boesmans  Is a corresponding author
  6. Pieter Vanden Berghe  Is a corresponding author
  1. University of Leuven, Belgium
  2. University of Melbourne, Australia

Abstract

The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location and response fingerprint of large populations of enteric neurons upon focal network stimulation. Complemented by neuronal tracing and volumetric reconstructions of synaptic contacts, this shows that the multifunctional proximal colon requires specific additional circuit components as compared to the distal colon, where peristalsis is the predominant motility pattern. Our study reveals that motility control is hard-wired in the enteric neural networks and that circuit complexity matches the motor pattern portfolio of specific intestinal regions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for each of the figures.

Article and author information

Author details

  1. Zhiling Li

    Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Marlene M Hao

    Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Chris Van den Haute

    Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Veerle Baekelandt

    Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Werend Boesmans

    Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium
    For correspondence
    werend.boesmans@kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2426-0451
  6. Pieter Vanden Berghe

    Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium
    For correspondence
    pieter.vandenberghe@med.kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0009-2094

Funding

Fonds Wetenschappelijk Onderzoek (G.0921.15)

  • Werend Boesmans
  • Pieter Vanden Berghe

Hercules Foundation (AKUL/15/37)

  • Werend Boesmans
  • Pieter Vanden Berghe

Chinese Scholarship Council (201408370078)

  • Zhiling Li

KULeuven (C32/15/031)

  • Veerle Baekelandt

Hercules Foundation (AKUL/11/37)

  • Werend Boesmans
  • Pieter Vanden Berghe

Fonds Wetenschappelijk Onderzoek (SBO/S006617N)

  • Veerle Baekelandt

Postdoctoral fellowship of the Fund for Scientific Research Flanders

  • Marlene M Hao

Fund for Scientific Research Flanders (G.0921.15 SBO/S006617N)

  • Pieter Vanden Berghe

IWT (SBO/130065)

  • Pieter Vanden Berghe

Hercules Foundation (AKUL/13/37)

  • Werend Boesmans
  • Pieter Vanden Berghe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the animal ethics committee of the KU Leuven guidelines for the use and care of animals (specific license numbers: P192-2013; P017-2013; P021-2015)

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,519
    views
  • 648
    downloads
  • 79
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiling Li
  2. Marlene M Hao
  3. Chris Van den Haute
  4. Veerle Baekelandt
  5. Werend Boesmans
  6. Pieter Vanden Berghe
(2019)
Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine
eLife 8:e42914.
https://doi.org/10.7554/eLife.42914

Share this article

https://doi.org/10.7554/eLife.42914

Further reading

    1. Neuroscience
    Andrea Sattin, Chiara Nardin ... Tommaso Fellin
    Research Advance

    Two-photon (2P) fluorescence imaging through gradient index (GRIN) lens-based endoscopes is fundamental to investigate the functional properties of neural populations in deep brain circuits. However, GRIN lenses have intrinsic optical aberrations, which severely degrade their imaging performance. GRIN aberrations decrease the signal-to-noise ratio (SNR) and spatial resolution of fluorescence signals, especially in lateral portions of the field-of-view (FOV), leading to restricted FOV and smaller number of recorded neurons. This is especially relevant for GRIN lenses of several millimeters in length, which are needed to reach the deeper regions of the rodent brain. We have previously demonstrated a novel method to enlarge the FOV and improve the spatial resolution of 2P microendoscopes based on GRIN lenses of length <4.1 mm (Antonini et al., 2020). However, previously developed microendoscopes were too short to reach the most ventral regions of the mouse brain. In this study, we combined optical simulations with fabrication of aspherical polymer microlenses through three-dimensional (3D) microprinting to correct for optical aberrations in long (length >6 mm) GRIN lens-based microendoscopes (diameter, 500 µm). Long corrected microendoscopes had improved spatial resolution, enabling imaging in significantly enlarged FOVs. Moreover, using synthetic calcium data we showed that aberration correction enabled detection of cells with higher SNR of fluorescent signals and decreased cross-contamination between neurons. Finally, we applied long corrected microendoscopes to perform large-scale and high-precision recordings of calcium signals in populations of neurons in the olfactory cortex, a brain region laying approximately 5 mm from the brain surface, of awake head-fixed mice. Long corrected microendoscopes are powerful new tools enabling population imaging with unprecedented large FOV and high spatial resolution in the most ventral regions of the mouse brain.

    1. Evolutionary Biology
    2. Neuroscience
    Anastasia A Makarova, Nicholas J Chua ... Alexey A Polilov
    Research Article

    The structure of compound eyes in arthropods has been the subject of many studies, revealing important biological principles. Until recently, these studies were constrained by the two-dimensional nature of available ultrastructural data. By taking advantage of the novel three-dimensional ultrastructural dataset obtained using volume electron microscopy, we present the first cellular-level reconstruction of the whole compound eye of an insect, the miniaturized parasitoid wasp Megaphragma viggianii. The compound eye of the female M. viggianii consists of 29 ommatidia and contains 478 cells. Despite the almost anucleate brain, all cells of the compound eye contain nuclei. As in larger insects, the dorsal rim area of the eye in M. viggianii contains ommatidia that are believed to be specialized in polarized light detection as reflected in their corneal and retinal morphology. We report the presence of three ‘ectopic’ photoreceptors. Our results offer new insights into the miniaturization of compound eyes and scaling of sensory organs in general.