Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine

  1. Zhiling Li
  2. Marlene M Hao
  3. Chris Van den Haute
  4. Veerle Baekelandt
  5. Werend Boesmans  Is a corresponding author
  6. Pieter Vanden Berghe  Is a corresponding author
  1. University of Leuven, Belgium
  2. University of Melbourne, Australia

Abstract

The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location and response fingerprint of large populations of enteric neurons upon focal network stimulation. Complemented by neuronal tracing and volumetric reconstructions of synaptic contacts, this shows that the multifunctional proximal colon requires specific additional circuit components as compared to the distal colon, where peristalsis is the predominant motility pattern. Our study reveals that motility control is hard-wired in the enteric neural networks and that circuit complexity matches the motor pattern portfolio of specific intestinal regions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for each of the figures.

Article and author information

Author details

  1. Zhiling Li

    Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Marlene M Hao

    Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Chris Van den Haute

    Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Veerle Baekelandt

    Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Werend Boesmans

    Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium
    For correspondence
    werend.boesmans@kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2426-0451
  6. Pieter Vanden Berghe

    Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium
    For correspondence
    pieter.vandenberghe@med.kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0009-2094

Funding

Fonds Wetenschappelijk Onderzoek (G.0921.15)

  • Werend Boesmans
  • Pieter Vanden Berghe

Hercules Foundation (AKUL/15/37)

  • Werend Boesmans
  • Pieter Vanden Berghe

Chinese Scholarship Council (201408370078)

  • Zhiling Li

KULeuven (C32/15/031)

  • Veerle Baekelandt

Hercules Foundation (AKUL/11/37)

  • Werend Boesmans
  • Pieter Vanden Berghe

Fonds Wetenschappelijk Onderzoek (SBO/S006617N)

  • Veerle Baekelandt

Postdoctoral fellowship of the Fund for Scientific Research Flanders

  • Marlene M Hao

Fund for Scientific Research Flanders (G.0921.15 SBO/S006617N)

  • Pieter Vanden Berghe

IWT (SBO/130065)

  • Pieter Vanden Berghe

Hercules Foundation (AKUL/13/37)

  • Werend Boesmans
  • Pieter Vanden Berghe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the animal ethics committee of the KU Leuven guidelines for the use and care of animals (specific license numbers: P192-2013; P017-2013; P021-2015)

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,388
    views
  • 637
    downloads
  • 75
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiling Li
  2. Marlene M Hao
  3. Chris Van den Haute
  4. Veerle Baekelandt
  5. Werend Boesmans
  6. Pieter Vanden Berghe
(2019)
Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine
eLife 8:e42914.
https://doi.org/10.7554/eLife.42914

Share this article

https://doi.org/10.7554/eLife.42914

Further reading

    1. Neuroscience
    Hans Auer, Donna Gift Cabalo ... Jessica Royer
    Research Article

    The amygdala is a subcortical region in the mesiotemporal lobe that plays a key role in emotional and sensory functions. Conventional neuroimaging experiments treat this structure as a single, uniform entity, but there is ample histological evidence for subregional heterogeneity in microstructure and function. The current study characterized subregional structure-function coupling in the human amygdala, integrating post-mortem histology and in vivo MRI at ultra-high fields. Core to our work was a novel neuroinformatics approach that leveraged multiscale texture analysis as well as non-linear dimensionality reduction techniques to identify salient dimensions of microstructural variation in a 3D post-mortem histological reconstruction of the human amygdala. We observed two axes of subregional variation in this region, describing inferior-superior as well as mediolateral trends in microstructural differentiation that in part recapitulated established atlases of amygdala subnuclei. Translating our approach to in vivo MRI data acquired at 7 Tesla, we could demonstrate the generalizability of these spatial trends across 10 healthy adults. We then cross-referenced microstructural axes with functional blood-oxygen-level dependent (BOLD) signal analysis obtained during task-free conditions, and revealed a close association of structural axes with macroscale functional network embedding, notably the temporo-limbic, default mode, and sensory-motor networks. Our novel multiscale approach consolidates descriptions of amygdala anatomy and function obtained from histological and in vivo imaging techniques.

    1. Neuroscience
    Andrea Brenna, Micaela Borsa ... Urs Albrecht
    Research Article

    The circadian clock enables organisms to synchronize biochemical and physiological processes over a 24 hr period. Natural changes in lighting conditions, as well as artificial disruptions like jet lag or shift work, can advance or delay the clock phase to align physiology with the environment. Within the suprachiasmatic nucleus (SCN) of the hypothalamus, circadian timekeeping and resetting rely on both membrane depolarization and intracellular second-messenger signaling. Voltage-gated calcium channels (VGCCs) facilitate calcium influx in both processes, activating intracellular signaling pathways that trigger Period (Per) gene expression. However, the precise mechanism by which these processes are concertedly gated remains unknown. Our study in mice demonstrates that cyclin-dependent kinase 5 (Cdk5) activity is modulated by light and regulates phase shifts of the circadian clock. We observed that knocking down Cdk5 in the SCN of mice affects phase delays but not phase advances. This is linked to uncontrolled calcium influx into SCN neurons and an unregulated protein kinase A (PKA)-calcium/calmodulin-dependent kinase (CaMK)-cAMP response element-binding protein (CREB) signaling pathway. Consequently, genes such as Per1 are not induced by light in the SCN of Cdk5 knock-down mice. Our experiments identified Cdk5 as a crucial light-modulated kinase that influences rapid clock phase adaptation. This finding elucidates how light responsiveness and clock phase coordination adapt activity onset to seasonal changes, jet lag, and shift work.