Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine

  1. Zhiling Li
  2. Marlene M Hao
  3. Chris Van den Haute
  4. Veerle Baekelandt
  5. Werend Boesmans  Is a corresponding author
  6. Pieter Vanden Berghe  Is a corresponding author
  1. University of Leuven, Belgium
  2. University of Melbourne, Australia

Abstract

The enteric nervous system controls a variety of gastrointestinal functions including intestinal motility. The minimal neuronal circuit necessary to direct peristalsis is well-characterized but several intestinal regions display also other motility patterns for which the underlying circuits and connectivity schemes that coordinate the transition between those patterns are poorly understood. We investigated whether in regions with a richer palette of motility patterns, the underlying nerve circuits reflect this complexity. Using Ca2+ imaging, we determined the location and response fingerprint of large populations of enteric neurons upon focal network stimulation. Complemented by neuronal tracing and volumetric reconstructions of synaptic contacts, this shows that the multifunctional proximal colon requires specific additional circuit components as compared to the distal colon, where peristalsis is the predominant motility pattern. Our study reveals that motility control is hard-wired in the enteric neural networks and that circuit complexity matches the motor pattern portfolio of specific intestinal regions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for each of the figures.

Article and author information

Author details

  1. Zhiling Li

    Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  2. Marlene M Hao

    Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Chris Van den Haute

    Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  4. Veerle Baekelandt

    Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  5. Werend Boesmans

    Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium
    For correspondence
    werend.boesmans@kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2426-0451
  6. Pieter Vanden Berghe

    Laboratory for Enteric NeuroScience (LENS), University of Leuven, Leuven, Belgium
    For correspondence
    pieter.vandenberghe@med.kuleuven.be
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0009-2094

Funding

Fonds Wetenschappelijk Onderzoek (G.0921.15)

  • Werend Boesmans
  • Pieter Vanden Berghe

Hercules Foundation (AKUL/15/37)

  • Werend Boesmans
  • Pieter Vanden Berghe

Chinese Scholarship Council (201408370078)

  • Zhiling Li

KULeuven (C32/15/031)

  • Veerle Baekelandt

Hercules Foundation (AKUL/11/37)

  • Werend Boesmans
  • Pieter Vanden Berghe

Fonds Wetenschappelijk Onderzoek (SBO/S006617N)

  • Veerle Baekelandt

Postdoctoral fellowship of the Fund for Scientific Research Flanders

  • Marlene M Hao

Fund for Scientific Research Flanders (G.0921.15 SBO/S006617N)

  • Pieter Vanden Berghe

IWT (SBO/130065)

  • Pieter Vanden Berghe

Hercules Foundation (AKUL/13/37)

  • Werend Boesmans
  • Pieter Vanden Berghe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were approved by the animal ethics committee of the KU Leuven guidelines for the use and care of animals (specific license numbers: P192-2013; P017-2013; P021-2015)

Copyright

© 2019, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,216
    views
  • 615
    downloads
  • 68
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Zhiling Li
  2. Marlene M Hao
  3. Chris Van den Haute
  4. Veerle Baekelandt
  5. Werend Boesmans
  6. Pieter Vanden Berghe
(2019)
Regional complexity in enteric neuron wiring reflects diversity of motility patterns in the mouse large intestine
eLife 8:e42914.
https://doi.org/10.7554/eLife.42914

Share this article

https://doi.org/10.7554/eLife.42914

Further reading

    1. Neuroscience
    Sofie Louise Valk, Veronika Engert ... Tania Singer
    Research Article

    The hippocampus is a central modulator of the HPA-axis, impacting the regulation of stress on brain structure, function, and behavior. The current study assessed whether three different types of 3 months mental Training Modules geared towards nurturing (a) attention-based mindfulness, (b) socio-affective, or (c) socio-cognitive skills may impact hippocampal organization by reducing stress. We evaluated mental training-induced changes in hippocampal subfield volume and intrinsic functional connectivity, by combining longitudinal structural and resting-state fMRI connectivity analysis in 332 healthy adults. We related these changes to changes in diurnal and chronic cortisol levels. We observed increases in bilateral cornu ammonis volume (CA1-3) following the 3 months compassion-based module targeting socio-affective skills (Affect module), as compared to socio-cognitive skills (Perspective module) or a waitlist cohort with no training intervention. Structural changes were paralleled by relative increases in functional connectivity of CA1-3 when fostering socio-affective as compared to socio-cognitive skills. Furthermore, training-induced changes in CA1-3 structure and function consistently correlated with reductions in cortisol output. Notably, using a multivariate approach, we found that other subfields that did not show group-level changes also contributed to changes in cortisol levels. Overall, we provide a link between a socio-emotional behavioural intervention, changes in hippocampal subfield structure and function, and reductions in cortisol in healthy adults.

    1. Neuroscience
    David L Haggerty, Brady K Atwood
    Research Advance

    How does alcohol consumption alter synaptic transmission across time, and do these alcohol-induced neuroadaptations occur similarly in both male and female mice? Previously we identified that anterior insular cortex (AIC) projections to the dorsolateral striatum (DLS) are uniquely sensitive to alcohol-induced neuroadaptations in male, but not female mice, and play a role in governing binge alcohol consumption in male mice (Haggerty et al., 2022). Here, by using high-resolution behavior data paired with in-vivo fiber photometry, we show how similar levels of alcohol intake are achieved via different behavioral strategies across sexes, and how inter-drinking session thirst states predict future alcohol intakes in females, but not males. Furthermore, we show how presynaptic calcium activity recorded from AIC synaptic inputs in the DLS across 3 weeks of water consumption followed by 3 weeks of binge alcohol consumption changes across, fluid, time, sex, and brain circuit lateralization. By time-locking presynaptic calcium activity from AIC inputs to the DLS to peri-initiation of drinking events we also show that AIC inputs into the left DLS robustly encode binge alcohol intake behaviors relative to water consumption. These findings suggest a fluid-, sex-, and lateralization-dependent role for the engagement of AIC inputs into the DLS that encode binge alcohol consumption behaviors and further contextualize alcohol-induced neuroadaptations at AIC inputs to the DLS.