Parallel pathways for sound processing and functional connectivity among layer 5 and 6 auditory corticofugal neurons

  1. Ross S Williamson  Is a corresponding author
  2. Daniel B Polley
  1. Massachusetts Eye and Ear Infirmary, United States

Abstract

Cortical layers (L) 5 and 6 are populated by intermingled cell-types with distinct inputs and downstream targets. Here, we made optogenetically guided recordings from L5 corticofugal (CF) and L6 corticothalamic (CT) neurons in the auditory cortex of awake mice to discern differences in sensory processing and underlying patterns of functional connectivity. Whereas L5 CF neurons showed broad stimulus selectivity with sluggish response latencies and extended temporal non-linearities, L6 CTs exhibited sparse selectivity and rapid temporal processing. L5 CF spikes lagged behind neighboring units and imposed weak feedforward excitation within the local column. By contrast, L6 CT spikes drove robust and sustained activity, particularly in local fast-spiking interneurons. Our findings underscore a duality among sub-cortical projection neurons, where L5 CF units are canonical broadcast neurons that integrate sensory inputs for transmission to distributed downstream targets, while L6 CT neurons are positioned to regulate thalamocortical response gain and selectivity.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data has been provided for Figures 2-7.

Article and author information

Author details

  1. Ross S Williamson

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    For correspondence
    rsw@pitt.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5633-7337
  2. Daniel B Polley

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5120-2409

Funding

National Institutes of Health (R01 DC017078)

  • Daniel B Polley

National Institutes of Health (F32 DC015376)

  • Ross S Williamson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: All procedures were approved by the Animal Care and Use Committee at the Massachusetts Eye and Ear Infirmary (protocol number 10-03-006) and followed guidelines established by the National Institutes of Health for the care and use of laboratory animals. All surgeries were performed under isoflurane, or ketamine and xylazine, and every effort was made to minimize suffering.

Copyright

© 2019, Williamson & Polley

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,900
    views
  • 615
    downloads
  • 81
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ross S Williamson
  2. Daniel B Polley
(2019)
Parallel pathways for sound processing and functional connectivity among layer 5 and 6 auditory corticofugal neurons
eLife 8:e42974.
https://doi.org/10.7554/eLife.42974

Share this article

https://doi.org/10.7554/eLife.42974

Further reading

    1. Neuroscience
    Elena Massai, Marco Bonizzato ... Marina Martinez
    Research Article

    Control of voluntary limb movement is predominantly attributed to the contralateral motor cortex. However, increasing evidence suggests the involvement of ipsilateral cortical networks in this process, especially in motor tasks requiring bilateral coordination, such as locomotion. In this study, we combined a unilateral thoracic spinal cord injury (SCI) with a cortical neuroprosthetic approach to investigate the functional role of the ipsilateral motor cortex in rat movement through spared contralesional pathways. Our findings reveal that in all SCI rats, stimulation of the ipsilesional motor cortex promoted a bilateral synergy. This synergy involved the elevation of the contralateral foot along with ipsilateral hindlimb extension. Additionally, in two out of seven animals, stimulation of a sub-region of the hindlimb motor cortex modulated ipsilateral hindlimb flexion. Importantly, ipsilateral cortical stimulation delivered after SCI immediately alleviated multiple locomotor and postural deficits, and this effect persisted after ablation of the homologous motor cortex. These results provide strong evidence of a causal link between cortical activation and precise ipsilateral control of hindlimb movement. This study has significant implications for the development of future neuroprosthetic technology and our understanding of motor control in the context of SCI.

    1. Neuroscience
    Bharath Krishnan, Noah Cowan
    Insight

    Mice can generate a cognitive map of an environment based on self-motion signals when there is a fixed association between their starting point and the location of their goal.