1. Neuroscience
Download icon

Parallel pathways for sound processing and functional connectivity among layer 5 and 6 auditory corticofugal neurons

  1. Ross S Williamson  Is a corresponding author
  2. Daniel B Polley
  1. Massachusetts Eye and Ear Infirmary, United States
Research Article
  • Cited 16
  • Views 2,560
  • Annotations
Cite this article as: eLife 2019;8:e42974 doi: 10.7554/eLife.42974


Cortical layers (L) 5 and 6 are populated by intermingled cell-types with distinct inputs and downstream targets. Here, we made optogenetically guided recordings from L5 corticofugal (CF) and L6 corticothalamic (CT) neurons in the auditory cortex of awake mice to discern differences in sensory processing and underlying patterns of functional connectivity. Whereas L5 CF neurons showed broad stimulus selectivity with sluggish response latencies and extended temporal non-linearities, L6 CTs exhibited sparse selectivity and rapid temporal processing. L5 CF spikes lagged behind neighboring units and imposed weak feedforward excitation within the local column. By contrast, L6 CT spikes drove robust and sustained activity, particularly in local fast-spiking interneurons. Our findings underscore a duality among sub-cortical projection neurons, where L5 CF units are canonical broadcast neurons that integrate sensory inputs for transmission to distributed downstream targets, while L6 CT neurons are positioned to regulate thalamocortical response gain and selectivity.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data has been provided for Figures 2-7.

Article and author information

Author details

  1. Ross S Williamson

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5633-7337
  2. Daniel B Polley

    Eaton-Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5120-2409


National Institutes of Health (R01 DC017078)

  • Daniel B Polley

National Institutes of Health (F32 DC015376)

  • Ross S Williamson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: Animal experimentation: All procedures were approved by the Animal Care and Use Committee at the Massachusetts Eye and Ear Infirmary (protocol number 10-03-006) and followed guidelines established by the National Institutes of Health for the care and use of laboratory animals. All surgeries were performed under isoflurane, or ketamine and xylazine, and every effort was made to minimize suffering.

Reviewing Editor

  1. Andrew J King, University of Oxford, United Kingdom

Publication history

  1. Received: October 18, 2018
  2. Accepted: February 6, 2019
  3. Accepted Manuscript published: February 8, 2019 (version 1)
  4. Version of Record published: February 21, 2019 (version 2)
  5. Version of Record updated: February 25, 2019 (version 3)


© 2019, Williamson & Polley

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 2,560
    Page views
  • 463
  • 16

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Rene Solano Fonseca et al.
    Research Article Updated

    Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in C. elegans to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons. Reducing cytochrome C oxidase function elevates mitochondrial-derived reactive oxygen species, which signal through the cytosolic hypoxia inducing transcription factor, Hif1a, to promote hyperphosphorylation and inactivation of the pyruvate dehydrogenase, PDHE1α. This critical enzyme initiates the Warburg shunt, which drives energetic reallocation from mitochondrial respiration to astrocyte-mediated glycolysis in a neuroprotective manner. These studies demonstrate a conserved process in which glycolytic preconditioning suppresses Parkinson-like hypersensitivity of dopaminergic neurons to trauma-induced degeneration via redox signaling and the Warburg effect.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.