Random-sequence genetic oligomer pools display an innate potential for ligation and recombination
Abstract
Recombination, the exchange of information between different genetic polymer strands, is of fundamental importance in biology for genome maintenance and genetic diversification mediated by dedicated recombinase enzymes. Here, we describe a pervasive non-enzymatic capacity for recombination (and ligation) in random-sequence genetic oligomer pools. Specifically, we examine random and semi-random eicosamer (N20) pools of RNA, DNA and the unnatural genetic polymers ANA (arabino-), HNA (hexitol-) and AtNA (altritol-nucleic acids). While DNA, ANA and HNA pools proved inert, RNA and AtNA pools displayed diverse modes of spontaneous intermolecular recombination, connecting recombination mechanistically to the vicinal ring cis-diol configuration shared by RNA and AtNA. Thus, the chemical constitution that renders both susceptible to hydrolysis emerges as the fundamental determinant of an innate capacity for recombination, which is shown to enable a concomitant increase in compositional, informational and structural pool complexity and hence evolutionary potential.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for: Figure 1, Figure 1-supplement 1, Figure 2, Figure 2-supplement 1, Figure 4, Figure 4-supplement 2, Figure 4-supplement 3, Figure 5, Figure 5-supplement 1, Figure 6 and Figure 6-supplement 2. Further source files are shell scripts for the motif search, extraction of secondary structure frequencies and size distributions and python scripts for the generation of random sequences using position-specific nucleotide frequencies and the simulations of the population level Shannon Index at different cleavage / ligation rates are available online (see Source Code Files 1-5).
-
Data from: Random-sequence genetic oligomer pools display an innate potential for ligation and recombinationDryad Digital Repository, 10.5061/dryad.gj8jv50.
Article and author information
Author details
Funding
Medical Research Council (MC_U105178804)
- Alexander I Taylor
- Benjamin T Porebski
- Gillian Houlihan
- Philipp Holliger
Federation of European Biochemical Societies (FEBS Long-Term Fellowship)
- Hannes Mutschler
KU Leuven (OT/1414/128)
- Mikhail Abramov
- Piet Herdewijn
FWO Vlaanderen (G078014N)
- Mikhail Abramov
- Piet Herdewijn
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2018, Mutschler et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,579
- views
-
- 497
- downloads
-
- 50
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.