1. Biochemistry and Chemical Biology
Download icon

Random-sequence genetic oligomer pools display an innate potential for ligation and recombination

  1. Hannes Mutschler  Is a corresponding author
  2. Alexander I Taylor
  3. Benjamin T Porebski
  4. Alice Lightowlers
  5. Gillian Houlihan
  6. Mikhail Abramov
  7. Piet Herdewijn
  8. Philipp Holliger  Is a corresponding author
  1. MRC Laboratory of Molecular Biology, United Kingdom
  2. Katholieke Universiteit Leuven, Belgium
Research Article
  • Cited 18
  • Views 2,472
  • Annotations
Cite this article as: eLife 2018;7:e43022 doi: 10.7554/eLife.43022

Abstract

Recombination, the exchange of information between different genetic polymer strands, is of fundamental importance in biology for genome maintenance and genetic diversification mediated by dedicated recombinase enzymes. Here, we describe a pervasive non-enzymatic capacity for recombination (and ligation) in random-sequence genetic oligomer pools. Specifically, we examine random and semi-random eicosamer (N20) pools of RNA, DNA and the unnatural genetic polymers ANA (arabino-), HNA (hexitol-) and AtNA (altritol-nucleic acids). While DNA, ANA and HNA pools proved inert, RNA and AtNA pools displayed diverse modes of spontaneous intermolecular recombination, connecting recombination mechanistically to the vicinal ring cis-diol configuration shared by RNA and AtNA. Thus, the chemical constitution that renders both susceptible to hydrolysis emerges as the fundamental determinant of an innate capacity for recombination, which is shown to enable a concomitant increase in compositional, informational and structural pool complexity and hence evolutionary potential.

Article and author information

Author details

  1. Hannes Mutschler

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    mutschler@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8005-1657
  2. Alexander I Taylor

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7684-1437
  3. Benjamin T Porebski

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Alice Lightowlers

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Gillian Houlihan

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Mikhail Abramov

    REGA Institute, Katholieke Universiteit Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  7. Piet Herdewijn

    REGA Institute, Katholieke Universiteit Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3589-8503
  8. Philipp Holliger

    MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    ph1@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3440-9854

Funding

Medical Research Council (MC_U105178804)

  • Alexander I Taylor
  • Benjamin T Porebski
  • Gillian Houlihan
  • Philipp Holliger

Federation of European Biochemical Societies (FEBS Long-Term Fellowship)

  • Hannes Mutschler

KU Leuven (OT/1414/128)

  • Mikhail Abramov
  • Piet Herdewijn

FWO Vlaanderen (G078014N)

  • Mikhail Abramov
  • Piet Herdewijn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ulrich Muller, UCSD, United States

Publication history

  1. Received: October 21, 2018
  2. Accepted: November 16, 2018
  3. Accepted Manuscript published: November 21, 2018 (version 1)
  4. Version of Record published: December 11, 2018 (version 2)

Copyright

© 2018, Mutschler et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,472
    Page views
  • 375
    Downloads
  • 18
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    Phil Huss et al.
    Research Article Updated

    The interaction between a bacteriophage and its host is mediated by the phage's receptor binding protein (RBP). Despite its fundamental role in governing phage activity and host range, molecular rules of RBP function remain a mystery. Here, we systematically dissect the functional role of every residue in the tip domain of T7 phage RBP (1660 variants) by developing a high-throughput, locus-specific, phage engineering method. This rich dataset allowed us to cross compare functional profiles across hosts to precisely identify regions of functional importance, many of which were previously unknown. Substitution patterns showed host-specific differences in position and physicochemical properties of mutations, revealing molecular adaptation to individual hosts. We discovered gain-of-function variants against resistant hosts and host-constricting variants that eliminated certain hosts. To demonstrate therapeutic utility, we engineered highly active T7 variants against a urinary tract pathogen. Our approach presents a generalized framework for characterizing sequence–function relationships in many phage–bacterial systems.

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Mikel Garcia-Marcos
    Research Article Updated

    It has become evident that activation of heterotrimeric G-proteins by cytoplasmic proteins that are not G-protein-coupled receptors (GPCRs) plays a role in physiology and disease. Despite sharing the same biochemical guanine nucleotide exchange factor (GEF) activity as GPCRs in vitro, the mechanisms by which these cytoplasmic proteins trigger G-protein-dependent signaling in cells have not been elucidated. Heterotrimeric G-proteins can give rise to two active signaling species, Gα-GTP and dissociated Gβγ, with different downstream effectors, but how non-receptor GEFs affect the levels of these two species in cells is not known. Here, a systematic comparison of GPCRs and three unrelated non-receptor proteins with GEF activity in vitro (GIV/Girdin, AGS1/Dexras1, and Ric-8A) revealed high divergence in their contribution to generating Gα-GTP and free Gβγ in cells directly measured with live-cell biosensors. These findings demonstrate fundamental differences in how receptor and non-receptor G-protein activators promote signaling in cells despite sharing similar biochemical activities in vitro.