Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality

  1. Amina A Kinkhabwala  Is a corresponding author
  2. Yi Gu  Is a corresponding author
  3. Dmitriy Aronov
  4. David W Tank  Is a corresponding author
  1. Caltech, United States
  2. Princeton University, United States

Abstract

During spatial navigation, animals use self-motion to estimate positions through path integration. However, estimation errors accumulate over time and it is unclear how they are corrected. Here we report a new cell class ('cue cell') encoding visual cues that could be used to correct errors in path integration in mouse medial entorhinal cortex (MEC). During virtual navigation, individual cue cells exhibited firing fields only near visual cues and their population response formed sequences repeated at each cue. These cells consistently responded to cues across multiple environments. On a track with cues on left and right sides, most cue cells responded to cues only one side. During navigation in a real arena, they showed spatially stable activity and accounted for 32% of unidentified, spatially stable MEC cells. These cue cell properties demonstrate that the MEC contains a code representing spatial landmarks, which could be important for error correction during path integration.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Amina A Kinkhabwala

    Biology and Biological Engineering, Caltech, Pasadena, United States
    For correspondence
    amina.kinkhabwala@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  2. Yi Gu

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    guyi.thu@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
  3. Dmitriy Aronov

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. David W Tank

    Princeton Neuroscience Institute, Princeton University, Princeton, United States
    For correspondence
    dwtank@princeton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9423-4267

Funding

National Institute of Neurological Disorders and Stroke (5R37NS081242)

  • David W Tank

National Institute of Mental Health (5R01MH083686)

  • David W Tank

National Institutes of Health (F32NS070514-01A1)

  • Amina A Kinkhabwala

The funders had no role in the experiments or analysis in this publication.

Ethics

Animal experimentation: All procedures were approved by the Princeton University Institutional Animal Care and Use Committee (IACUC protocol# 1910-15) and were in compliance with the Guide for the Care and Use of Laboratory Animals.

Copyright

© 2020, Kinkhabwala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,047
    views
  • 605
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Citations by DOI

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Amina A Kinkhabwala
  2. Yi Gu
  3. Dmitriy Aronov
  4. David W Tank
(2020)
Visual cue-related activity of cells in the medial entorhinal cortex during navigation in virtual reality
eLife 9:e43140.
https://doi.org/10.7554/eLife.43140

Share this article

https://doi.org/10.7554/eLife.43140