1. Biochemistry and Chemical Biology
Download icon

Optical manipulation of sphingolipid biosynthesis using photoswitchable ceramides

  1. Matthijs Kol
  2. Ben Williams
  3. Henry Toombs-Ruane
  4. Henri G Franquelim
  5. Sergei Korneev
  6. Christian Schroeer
  7. Petra Schwille
  8. Dirk Trauner  Is a corresponding author
  9. Joost CM Holthuis  Is a corresponding author
  10. James A Frank  Is a corresponding author
  1. University of Osnabrück, Germany
  2. Ludwig Maximilians University Munich, Germany
  3. Max Planck Institute of Biochemistry, Germany
  4. New York University, United States
  5. University of Osnabrück, Germany
  6. Oregon Health and Science University, United States
Tools and Resources
  • Cited 10
  • Views 2,658
  • Annotations
Cite this article as: eLife 2019;8:e43230 doi: 10.7554/eLife.43230

Abstract

Ceramides are central intermediates of sphingolipid metabolism that also function as potent messengers in stress signaling and apoptosis. Progress in understanding how ceramides execute their biological roles is hampered by a lack of methods to manipulate their cellular levels and metabolic fate with appropriate spatiotemporal precision. Here, we report on clickable, azobenzene-containing ceramides, caCers, as photoswitchable metabolic substrates to exert optical control over sphingolipid production in cells. Combining atomic force microscopy on model bilayers with metabolic tracing studies in cells, we demonstrate that light-induced alterations in the lateral packing of caCers lead to marked differences in their metabolic conversion by sphingomyelin synthase and glucosylceramide synthase. These changes in metabolic rates are instant and reversible over several cycles of photoswitching. Our findings disclose new opportunities to probe the causal roles of ceramides and their metabolic derivatives in a wide array of sphingolipid-dependent cellular processes with the spatiotemporal precision of light.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting source data file. Source data files have been provided for Figures 4-6.

Article and author information

Author details

  1. Matthijs Kol

    Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3068-6501
  2. Ben Williams

    Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Henry Toombs-Ruane

    Department of Chemistry, Ludwig Maximilians University Munich, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Henri G Franquelim

    Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6229-4276
  5. Sergei Korneev

    Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Christian Schroeer

    Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Petra Schwille

    Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6106-4847
  8. Dirk Trauner

    Department of Chemistry, New York University, New York, United States
    For correspondence
    dirktrauner@nyu.edu
    Competing interests
    The authors declare that no competing interests exist.
  9. Joost CM Holthuis

    Department of Biology/Chemistry, University of Osnabrück, Osnabrück, Germany
    For correspondence
    Joost.Holthuis@Biologie.Uni-Osnabrueck.DE
    Competing interests
    The authors declare that no competing interests exist.
  10. James A Frank

    The Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    frankja@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6705-2540

Funding

Deutsche Forschungsgemeinschaft (SFB1032)

  • Henri G Franquelim
  • Petra Schwille
  • Dirk Trauner
  • James A Frank

National Sciences and Engineering Research Council of Canada

  • Ben Williams

Deutsche Forschungsgemeinschaft (SFB944)

  • Matthijs Kol
  • Joost CM Holthuis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Arun Radhakrishnan, University of Texas Southwestern Medical Center, United States

Publication history

  1. Received: October 30, 2018
  2. Accepted: February 2, 2019
  3. Accepted Manuscript published: February 5, 2019 (version 1)
  4. Version of Record published: February 22, 2019 (version 2)

Copyright

© 2019, Kol et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,658
    Page views
  • 460
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Thomas S McAlear, Susanne Bechstedt
    Research Article

    Cells increase microtubule dynamics to make large rearrangements to their microtubule cytoskeleton during cell division. Changes in microtubule dynamics are essential for the formation and function of the mitotic spindle, and misregulation can lead to aneuploidy and cancer. Using in vitro reconstitution assays we show that the mitotic spindle protein Cytoskeleton-Associated Protein 2 (CKAP2) has a strong effect on nucleation of microtubules by lowering the critical tubulin concentration 100-fold. CKAP2 increases the apparent rate constant ka of microtubule growth by 50-fold and increases microtubule growth rates. In addition, CKAP2 strongly suppresses catastrophes. Our results identify CKAP2 as the most potent microtubule growth factor to date. These finding help explain CKAP2's role as an important spindle protein, proliferation marker, and oncogene.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Andrea Loreto et al.
    Research Article Updated

    Axon loss underlies symptom onset and progression in many neurodegenerative disorders. Axon degeneration in injury and disease is promoted by activation of the NAD-consuming enzyme SARM1. Here, we report a novel activator of SARM1, a metabolite of the pesticide and neurotoxin vacor. Removal of SARM1 completely rescues mouse neurons from vacor-induced neuron and axon death in vitro and in vivo. We present the crystal structure of the Drosophila SARM1 regulatory domain complexed with this activator, the vacor metabolite VMN, which as the most potent activator yet known is likely to support drug development for human SARM1 and NMNAT2 disorders. This study indicates the mechanism of neurotoxicity and pesticide action by vacor, raises important questions about other pyridines in wider use today, provides important new tools for drug discovery, and demonstrates that removing SARM1 can robustly block programmed axon death induced by toxicity as well as genetic mutation.