Local online learning in recurrent networks with random feedback

  1. James M Murray  Is a corresponding author
  1. Columbia University, United States

Abstract

Recurrent neural networks (RNNs) enable the production and processing of time-dependent signals such as those involved in movement and working memory. Classic gradient-based algorithms for training RNNs have been available for decades, but are inconsistent with biological features of the brain, such as causality and locality. We derive an approximation to gradient-based learning that comports with these constraints by requiring synaptic weight updates to depend only on local information about pre- and postsynaptic activities, in addition to a random feedback projection of the RNN output error. In addition to providing mathematical arguments for the effectiveness of the new learning rule, we show through simulations that it can be used to train an RNN to perform a variety of tasks. Finally, to overcome the difficulty of training over very large numbers of timesteps, we propose an augmented circuit architecture that allows the RNN to concatenate short-duration patterns into longer sequences.

Data availability

Code implementing the RFLO learning algorithm for the example shown in Figure 2 has been included as a source code file accompanying this manuscript.

Article and author information

Author details

  1. James M Murray

    Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, United States
    For correspondence
    jm4347@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3706-4895

Funding

National Institutes of Health (DP5 OD019897)

  • James M Murray

National Science Foundation (DBI-1707398)

  • James M Murray

Gatsby Charitable Foundation

  • James M Murray

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Murray

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,837
    views
  • 929
    downloads
  • 50
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James M Murray
(2019)
Local online learning in recurrent networks with random feedback
eLife 8:e43299.
https://doi.org/10.7554/eLife.43299

Share this article

https://doi.org/10.7554/eLife.43299

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.