Abstract

Generating recombinant monoclonal antibodies (R-mAbs) from mAb-producing hybridomas offers numerous advantages that increase the effectiveness, reproducibility, and transparent reporting of research. We report here the generation of a novel resource in the form of a library of recombinant R-mAbs validated for neuroscience research. We cloned immunoglobulin G (IgG) variable domains from cryopreserved hybridoma cells and input them into an integrated pipeline for expression and validation of functional R-mAbs. To improve efficiency over standard protocols, we eliminated aberrant Sp2/0-Ag14 hybridoma-derived variable light transcripts using restriction enzyme treatment. Further, we engineered a plasmid backbone that allows for switching of the IgG subclasses without altering target binding specificity to generate R-mAbs useful in simultaneous multiplex labeling experiments not previously possible. The method was also employed to rescue IgG variable sequences and generate functional R-mAbs from a non-viable cryopreserved hybridoma. All R-mAb sequences and plasmids will be archived and disseminated from open source suppliers.

Data availability

Plasmids and R-mAb sequences will be made available via Addgene (https://www.addgene.org/James_Trimmer/).

Article and author information

Author details

  1. Nicolas P Andrews

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Justin X Boeckman

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0022-1474
  3. Colleen F Manning

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Joe T Nguyen

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6647-0561
  5. Hannah Bechtold

    Department of Molecular and Cellular Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Camelia Dumitras

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Belvin Gong

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Kimberly Nguyen

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Deborah van der List

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Karl D Murray

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. JoAnne Engebrecht

    Department of Physiology and Membrane Biology, University of California, Davis, Davis, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. James S Trimmer

    Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, United States
    For correspondence
    jtrimmer@ucdavis.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6117-3912

Funding

National Institute of Neurological Disorders and Stroke (U24 NS050606)

  • James S Trimmer

National Institute of Neurological Disorders and Stroke (R24 NS092991)

  • James S Trimmer

National Institute of Neurological Disorders and Stroke (U24 NS109113)

  • James S Trimmer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#20485) of the University of California Davis. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of California Davis (Animal Welfare Assurance Number A-3433-01). All procedures were performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2019, Andrews et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,167
    views
  • 1,089
    downloads
  • 37
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicolas P Andrews
  2. Justin X Boeckman
  3. Colleen F Manning
  4. Joe T Nguyen
  5. Hannah Bechtold
  6. Camelia Dumitras
  7. Belvin Gong
  8. Kimberly Nguyen
  9. Deborah van der List
  10. Karl D Murray
  11. JoAnne Engebrecht
  12. James S Trimmer
(2019)
A toolbox of IgG subclass-switched recombinant monoclonal antibodies for enhanced multiplex immunolabeling of brain
eLife 8:e43322.
https://doi.org/10.7554/eLife.43322

Share this article

https://doi.org/10.7554/eLife.43322

Further reading

    1. Neuroscience
    Sven Ohl, Martin Rolfs
    Research Article

    Detecting causal relations structures our perception of events in the world. Here, we determined for visual interactions whether generalized (i.e. feature-invariant) or specialized (i.e. feature-selective) visual routines underlie the perception of causality. To this end, we applied a visual adaptation protocol to assess the adaptability of specific features in classical launching events of simple geometric shapes. We asked observers to report whether they observed a launch or a pass in ambiguous test events (i.e. the overlap between two discs varied from trial to trial). After prolonged exposure to causal launch events (the adaptor) defined by a particular set of features (i.e. a particular motion direction, motion speed, or feature conjunction), observers were less likely to see causal launches in subsequent ambiguous test events than before adaptation. Crucially, adaptation was contingent on the causal impression in launches as demonstrated by a lack of adaptation in non-causal control events. We assessed whether this negative aftereffect transfers to test events with a new set of feature values that were not presented during adaptation. Processing in specialized (as opposed to generalized) visual routines predicts that the transfer of visual adaptation depends on the feature similarity of the adaptor and the test event. We show that the negative aftereffects do not transfer to unadapted launch directions but do transfer to launch events of different speeds. Finally, we used colored discs to assign distinct feature-based identities to the launching and the launched stimulus. We found that the adaptation transferred across colors if the test event had the same motion direction as the adaptor. In summary, visual adaptation allowed us to carve out a visual feature space underlying the perception of causality and revealed specialized visual routines that are tuned to a launch’s motion direction.

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.