Human macular Müller cells rely more on serine biosynthesis to combat oxidative stress than those from the periphery

  1. Ting Zhang
  2. Ling Zhu  Is a corresponding author
  3. Michele Catherine Madigan
  4. Wei Liu
  5. Weiyong Shen
  6. Svetlana Cherepanoff
  7. Fanfan Zhou
  8. Shaoxue Zeng
  9. Jianhai Du
  10. Mark Cedric Gillies
  1. The University of Sydney, Australia
  2. Sidra Medicine, Qatar
  3. St Vincent's Hospital, Australia
  4. West Virginia University, United States

Abstract

The human macula is more susceptible than the peripheral retina to developing blinding conditions such as age-related macular degeneration, diabetic retinopathy. A key difference between them may be the nature of their Müller cells. We found primary cultured Müller cells from macula and peripheral retina display significant morphological and transcriptomic differences. Macular Müller cells expressed more Phosphoglycerate Dehydrogenase (PHGDH, a rate-limiting enzyme in serine synthesis) than peripheral Müller cells. The serine synthesis, glycolytic and mitochondrial function were more activated in macular than peripheral Müller cells. Serine biosynthesis is critical in defending against oxidative stress. Intracellular reactive oxygen species and glutathione levels were increased in primary cultured macular Müller cells which were more susceptible to oxidative stress after inhibition of PHGDH. Our findings indicate serine biosynthesis is a critical part of the macular defence against oxidative stress and suggest dysregulation of this pathway as a potential cause of macular pathology.

Data availability

RNA sequencing data are included in the manuscript and Supplementary File. These data are also available at Dryad (https://datadryad.org/dx.doi:10.5061/dryad.hp60p89)

The following data sets were generated

Article and author information

Author details

  1. Ting Zhang

    Save Sight Institute, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  2. Ling Zhu

    Save Sight Institute, The University of Sydney, Sydney, Australia
    For correspondence
    ling.zhu@sydney.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0776-1630
  3. Michele Catherine Madigan

    Save Sight Institute, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Wei Liu

    Clinical Genomics Laboratory, Sidra Medicine, Doha, Qatar
    Competing interests
    The authors declare that no competing interests exist.
  5. Weiyong Shen

    Save Sight Institute, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Svetlana Cherepanoff

    Department of Anatomical Pathology, St Vincent's Hospital, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Fanfan Zhou

    Faculty of Pharmacy, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Shaoxue Zeng

    Save Sight Institute, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. Jianhai Du

    Department of Ophthalmology, West Virginia University, Morgantown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Mark Cedric Gillies

    Save Sight Institute, The University of Sydney, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.

Funding

National Health and Medical Research Council

  • Ling Zhu
  • Weiyong Shen
  • Mark Cedric Gillies

The Ophthalmic Research Institute of Australia

  • Ling Zhu
  • Mark Cedric Gillies

National Institutes of Health

  • Jianhai Du

Lowy Medical Research Institute

  • Ting Zhang
  • Ling Zhu
  • Weiyong Shen
  • Mark Cedric Gillies

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Human retinas were obtained from post-mortem donor eyes with ethical approval from Human Research Ethics Committee of the University of Sydney (HREC#:16/282).

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 399
    downloads

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

Share this article

https://doi.org/10.7554/eLife.43598

Further reading

    1. Neuroscience
    Ulrike Pech, Jasper Janssens ... Patrik Verstreken
    Research Article

    The classical diagnosis of Parkinsonism is based on motor symptoms that are the consequence of nigrostriatal pathway dysfunction and reduced dopaminergic output. However, a decade prior to the emergence of motor issues, patients frequently experience non-motor symptoms, such as a reduced sense of smell (hyposmia). The cellular and molecular bases for these early defects remain enigmatic. To explore this, we developed a new collection of five fruit fly models of familial Parkinsonism and conducted single-cell RNA sequencing on young brains of these models. Interestingly, cholinergic projection neurons are the most vulnerable cells, and genes associated with presynaptic function are the most deregulated. Additional single nucleus sequencing of three specific brain regions of Parkinson’s disease patients confirms these findings. Indeed, the disturbances lead to early synaptic dysfunction, notably affecting cholinergic olfactory projection neurons crucial for olfactory function in flies. Correcting these defects specifically in olfactory cholinergic interneurons in flies or inducing cholinergic signaling in Parkinson mutant human induced dopaminergic neurons in vitro using nicotine, both rescue age-dependent dopaminergic neuron decline. Hence, our research uncovers that one of the earliest indicators of disease in five different models of familial Parkinsonism is synaptic dysfunction in higher-order cholinergic projection neurons and this contributes to the development of hyposmia. Furthermore, the shared pathways of synaptic failure in these cholinergic neurons ultimately contribute to dopaminergic dysfunction later in life.

    1. Neuroscience
    Gergely F Turi, Sasa Teng ... Yueqing Peng
    Research Article

    Synchronous neuronal activity is organized into neuronal oscillations with various frequency and time domains across different brain areas and brain states. For example, hippocampal theta, gamma, and sharp wave oscillations are critical for memory formation and communication between hippocampal subareas and the cortex. In this study, we investigated the neuronal activity of the dentate gyrus (DG) with optical imaging tools during sleep-wake cycles in mice. We found that the activity of major glutamatergic cell populations in the DG is organized into infraslow oscillations (0.01–0.03 Hz) during NREM sleep. Although the DG is considered a sparsely active network during wakefulness, we found that 50% of granule cells and about 25% of mossy cells exhibit increased activity during NREM sleep, compared to that during wakefulness. Further experiments revealed that the infraslow oscillation in the DG was correlated with rhythmic serotonin release during sleep, which oscillates at the same frequency but in an opposite phase. Genetic manipulation of 5-HT receptors revealed that this neuromodulatory regulation is mediated by Htr1a receptors and the knockdown of these receptors leads to memory impairment. Together, our results provide novel mechanistic insights into how the 5-HT system can influence hippocampal activity patterns during sleep.