Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization

Abstract

Metastasis-initiating cells dynamically adapt to the distinct microenvironments of different organs, but these early adaptations are poorly understood due to the limited sensitivity of in situ transcriptomics. We developed fluorouracil-labeled RNA sequencing (Flura-seq) for in situ analysis with high sensitivity. Flura-seq utilizes cytosine deaminase (CD) to convert fluorocytosine to fluorouracil, metabolically labeling nascent RNA in rare cell populations in situ for purification and sequencing. Flura-seq revealed hundreds of unique, dynamic organ-specific gene signatures depending on the microenvironment in mouse xenograft breast cancer micrometastases. Specifically, the mitochondrial electron transport Complex I, oxidative stress and counteracting antioxidant programs were induced in pulmonary micrometastases, compared to mammary tumors or brain micrometastases. We confirmed lung metastasis-specific increase in oxidative stress and upregulation of antioxidants in clinical samples, thus validating Flura-seq's utility in identifying clinically actionable microenvironmental adaptations in early metastasis. The sensitivity, robustness and economy of Flura-seq are broadly applicable beyond cancer research.

Data availability

Sequencing data have been deposited in GEO under accession codes GSE93605 and GSE118937.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Harihar Basnet

    Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    Harihar Basnet, Has filed for patent for Flura-seq method (PCT/US18/22092).
  2. Lin Tian

    Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  3. Karuna Ganesh

    Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  4. Yun-Han Huang

    Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  5. Danilo G Macalinao

    Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  6. Edi Brogi

    Department of Pathology, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  7. Lydia Finley

    Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    Competing interests
    No competing interests declared.
  8. Joan Massagué

    Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, United States
    For correspondence
    j-massague@ski.mskcc.org
    Competing interests
    Joan Massagué, Reviewing editor, eLife. Has filed for patent for Flura-seq method (PCT/US18/22092). Serves in the scientific advisory board and owns company stock in Scholar Rock.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9324-8408

Funding

National Institutes of Health (P01-CA094060)

  • Joan Massagué

Damon Runyon Cancer Research Foundation (DR-12998)

  • Harihar Basnet

Department of Defense (W81XWH-12-0074)

  • Joan Massagué

National Institutes of Health (T32-CA009207)

  • Karuna Ganesh

National Institutes of Health (T32-GM07739)

  • Yun-Han Huang

National Institutes of Health (K08-CA230213)

  • Karuna Ganesh

National Institutes of Health (F30-CA203238)

  • Yun-Han Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Matthew G Vander Heiden, Massachusetts Institute of Technology, United States

Ethics

Animal experimentation: Mouse experiments were performed following the protocols approved by the MSKCC Institutional Animal Care and Use Committee (IACUC) (#99-09-032).

Version history

  1. Received: November 14, 2018
  2. Accepted: March 6, 2019
  3. Accepted Manuscript published: March 26, 2019 (version 1)
  4. Version of Record published: March 29, 2019 (version 2)

Copyright

© 2019, Basnet et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,640
    views
  • 812
    downloads
  • 47
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Harihar Basnet
  2. Lin Tian
  3. Karuna Ganesh
  4. Yun-Han Huang
  5. Danilo G Macalinao
  6. Edi Brogi
  7. Lydia Finley
  8. Joan Massagué
(2019)
Flura-seq identifies organ-specific metabolic adaptations during early metastatic colonization
eLife 8:e43627.
https://doi.org/10.7554/eLife.43627

Share this article

https://doi.org/10.7554/eLife.43627

Further reading

    1. Cancer Biology
    2. Cell Biology
    Francesca Butera, Julia E Sero ... Chris Bakal
    Research Article

    The canonical NF-κB transcription factor RELA is a master regulator of immune and stress responses and is upregulated in PDAC tumours. In this study, we characterised previously unexplored endogenous RELA-GFP dynamics in PDAC cell lines through live single cell imaging. Our observations revealed that TNFα stimulation induces rapid, sustained, and non-oscillatory nuclear translocation of RELA. Through Bayesian analysis of single cell datasets with variation in nuclear RELA, we predicted that RELA heterogeneity in PDAC cell lines is dependent on F-actin dynamics. RNA-seq analysis identified distinct clusters of RELA-regulated gene expression in PDAC cells, including TNFα-induced RELA upregulation of the actin regulators NUAK2 and ARHGAP31. Further, siRNA-mediated depletion of ARHGAP31 and NUAK2 altered TNFα-stimulated nuclear RELA dynamics in PDAC cells, establishing a novel negative feedback loop that regulates RELA activation by TNFα. Additionally, we characterised the NF-κB pathway in PDAC cells, identifying how NF-κB/IκB proteins genetically and physically interact with RELA in the absence or presence of TNFα. Taken together, we provide computational and experimental support for interdependence between the F-actin network and the NF-κB pathway with RELA translocation dynamics in PDAC.

    1. Cancer Biology
    Danielle Algranati, Roni Oren ... Efrat Shema
    Research Article

    Diffuse midline gliomas (DMGs) are aggressive and fatal pediatric tumors of the central nervous system that are highly resistant to treatments. Lysine to methionine substitution of residue 27 on histone H3 (H3-K27M) is a driver mutation in DMGs, reshaping the epigenetic landscape of these cells to promote tumorigenesis. H3-K27M gliomas are characterized by deregulation of histone acetylation and methylation pathways, as well as the oncogenic MYC pathway. In search of effective treatment, we examined the therapeutic potential of dual targeting of histone deacetylases (HDACs) and MYC in these tumors. Treatment of H3-K27M patient-derived cells with Sulfopin, an inhibitor shown to block MYC-driven tumors in vivo, in combination with the HDAC inhibitor Vorinostat, resulted in substantial decrease in cell viability. Moreover, transcriptome and epigenome profiling revealed synergistic effect of this drug combination in downregulation of prominent oncogenic pathways such as mTOR. Finally, in vivo studies of patient-derived orthotopic xenograft models showed significant tumor growth reduction in mice treated with the drug combination. These results highlight the combined treatment with PIN1 and HDAC inhibitors as a promising therapeutic approach for these aggressive tumors.