Self-organized reactivation maintains and reinforces memories despite synaptic turnover
Abstract
Long-term memories are believed to be stored in the synapses of cortical neuronal networks. However, recent experiments report continuous creation and removal of cortical synapses, which raises the question how memories can survive on such a variable substrate. Here, we study the formation and retention of associative memory in a computational model based on Hebbian cell assemblies in the presence of both synaptic and structural plasticity. During rest periods, such as may occur during sleep, the assemblies reactivate spontaneously, reinforcing memories against ongoing synapse removal and replacement. Brief daily reactivations during rest-periods suffice to not only maintain the assemblies, but even strengthen them, and improve pattern completion, consistent with offline memory gains observed experimentally. While the connectivity inside memory representations is strengthened during rest phases, connections in the rest of the network decay and vanish thus reconciling apparently conflicting hypotheses of the influence of sleep on cortical connectivity.
Data availability
All data generated or analysed during this study are included in the manuscript and supporting files. The source code zip archive (Source code 1) contains the model simulation code and the stimulation file used to generate Figure 2, 3, 4B&C, 5 and 6 as well as Figure 4-figure supplements 1 and 2.
Article and author information
Author details
Funding
Deutsche Forschungsgemeinschaft (FA 1471/1-1 and 2-1)
- Michael Jan Fauth
Engineering and Physical Sciences Research Council (EP/R030952/1)
- Mark CW van Rossum
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Frances K Skinner, Krembil Research Institute, University Health Network, Canada
Publication history
- Received: November 19, 2018
- Accepted: April 30, 2019
- Accepted Manuscript published: May 10, 2019 (version 1)
- Version of Record published: June 3, 2019 (version 2)
Copyright
© 2019, Fauth & van Rossum
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,435
- Page views
-
- 524
- Downloads
-
- 31
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Neuroscience
Disentangling human brain connectivity requires an accurate description of nerve fiber trajectories, unveiled via detailed mapping of axonal orientations. However, this is challenging because axons can cross one another on a micrometer scale. Diffusion magnetic resonance imaging (dMRI) can be used to infer axonal connectivity because it is sensitive to axonal alignment, but it has limited spatial resolution and specificity. Scattered light imaging (SLI) and small-angle X-ray scattering (SAXS) reveal axonal orientations with microscopic resolution and high specificity, respectively. Here, we apply both scattering techniques on the same samples and cross-validate them, laying the groundwork for ground-truth axonal orientation imaging and validating dMRI. We evaluate brain regions that include unidirectional and crossing fibers in human and vervet monkey brain sections. SLI and SAXS quantitatively agree regarding in-plane fiber orientations including crossings, while dMRI agrees in the majority of voxels with small discrepancies. We further use SAXS and dMRI to confirm theoretical predictions regarding SLI determination of through-plane fiber orientations. Scattered light and X-ray imaging can provide quantitative micrometer 3D fiber orientations with high resolution and specificity, facilitating detailed investigations of complex fiber architecture in the animal and human brain.
-
- Computational and Systems Biology
- Neuroscience
Brains are not engineered solutions to a well-defined problem but arose through selective pressure acting on random variation. It is therefore unclear how well a model chosen by an experimenter can relate neural activity to experimental conditions. Here we developed 'Model identification of neural encoding (MINE)'. MINE is an accessible framework using convolutional neural networks (CNN) to discover and characterize a model that relates aspects of tasks to neural activity. Although flexible, CNNs are difficult to interpret. We use Taylor decomposition approaches to understand the discovered model and how it maps task features to activity. We apply MINE to a published cortical dataset as well as experiments designed to probe thermoregulatory circuits in zebrafish. MINE allowed us to characterize neurons according to their receptive field and computational complexity, features which anatomically segregate in the brain. We also identified a new class of neurons that integrate thermosensory and behavioral information which eluded us previously when using traditional clustering and regression-based approaches.