Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation

  1. Wen-Hao Zhang
  2. He Wang
  3. Aihua Chen
  4. Yong Gu
  5. Tai Sing Lee
  6. K Y Michael Wong  Is a corresponding author
  7. Si Wu  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. East China Normal University, China
  3. Chinese Academy of Sciences, China
  4. Carnegie Mellon University, United States
  5. Peking University, China

Abstract

Our brain perceives the world by exploiting multisensory cues to extract information about various aspects of external stimuli. The sensory cues from the same stimulus should be integrated to improve perception, and otherwise segregated to distinguish different stimuli. In reality, however, the brain faces the challenge of recognizing stimuli without knowing in advance the sources of sensory cues. To address this challenge, we propose that the brain conducts integration and segregation concurrently with complementary neurons. Studying the inference of heading-direction via visual and vestibular cues, we develop a network model with two reciprocally connected modules modelling interacting visual-vestibular areas. In each module, there are two groups of neurons whose tunings under each sensory cue are either congruent or opposite. We show that congruent neurons implement integration, while opposite neurons compute cue disparity information for segregation, and the interplay between two groups of neurons achieves efficient multisensory information processing.

Data availability

The submitted manuscript presents a theoretical network modelling work. All codes used in this study has been uploaded to GitHub (https://github.com/wenhao-z/Opposite_neuron) and could be openly accessed.

Article and author information

Author details

  1. Wen-Hao Zhang

    Department of Physics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. He Wang

    Department of Physics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2101-8683
  3. Aihua Chen

    Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yong Gu

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4437-8956
  5. Tai Sing Lee

    Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. K Y Michael Wong

    Department of Physics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    phkywong@ust.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7641-5024
  7. Si Wu

    School of Electronics Engineering and Computer Science, Peking University, Beijing, China
    For correspondence
    siwu@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

Research Grants Council of Hong Kong (N HKUST606/12)

  • K Y Michael Wong

Research Grants Council of Hong Kong (605813)

  • K Y Michael Wong

Research Grants Council of Hong Kong (16322616)

  • K Y Michael Wong

Research Grants Council of Hong Kong (16306817)

  • K Y Michael Wong

National Basic Research Program of China (2014CB846101)

  • Si Wu

Natural Science Foundation of China (31261160495)

  • Si Wu

National Science Foundation (CISE1320651)

  • Tai Sing Lee

Intelligence Advanced Research Projects Activity (D16PC00007)

  • Tai Sing Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,047
    views
  • 525
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wen-Hao Zhang
  2. He Wang
  3. Aihua Chen
  4. Yong Gu
  5. Tai Sing Lee
  6. K Y Michael Wong
  7. Si Wu
(2019)
Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation
eLife 8:e43753.
https://doi.org/10.7554/eLife.43753

Share this article

https://doi.org/10.7554/eLife.43753

Further reading

    1. Medicine
    2. Neuroscience
    LeYuan Gu, WeiHui Shao ... HongHai Zhang
    Research Article

    The advent of midazolam holds profound implications for modern clinical practice. The hypnotic and sedative effects of midazolam afford it broad clinical applicability. However, the specific mechanisms underlying the modulation of altered consciousness by midazolam remain elusive. Herein, using pharmacology, optogenetics, chemogenetics, fiber photometry, and gene knockdown, this in vivo research revealed the role of locus coeruleus (LC)-ventrolateral preoptic nucleus noradrenergic neural circuit in regulating midazolam-induced altered consciousness. This effect was mediated by α1 adrenergic receptors. Moreover, gamma-aminobutyric acid receptor type A (GABAA-R) represents a mechanistically crucial binding site in the LC for midazolam. These findings will provide novel insights into the neural circuit mechanisms underlying the recovery of consciousness after midazolam administration and will help guide the timing of clinical dosing and propose effective intervention targets for timely recovery from midazolam-induced loss of consciousness.

    1. Neuroscience
    John P Grogan, Matthias Raemaekers ... Sanjay G Manohar
    Research Article

    Motivation depends on dopamine, but might be modulated by acetylcholine which influences dopamine release in the striatum, and amplifies motivation in animal studies. A corresponding effect in humans would be important clinically, since anticholinergic drugs are frequently used in Parkinson’s disease, a condition that can also disrupt motivation. Reward and dopamine make us more ready to respond, as indexed by reaction times (RT), and move faster, sometimes termed vigour. These effects may be controlled by preparatory processes that can be tracked using electroencephalography (EEG). We measured vigour in a placebo-controlled, double-blinded study of trihexyphenidyl (THP), a muscarinic antagonist, with an incentivised eye movement task and EEG. Participants responded faster and with greater vigour when incentives were high, but THP blunted these motivational effects, suggesting that muscarinic receptors facilitate invigoration by reward. Preparatory EEG build-up (contingent negative variation [CNV]) was strengthened by high incentives and by muscarinic blockade, although THP reduced the incentive effect. The amplitude of preparatory activity predicted both vigour and RT, although over distinct scalp regions; frontal activity predicted vigour, whereas a larger, earlier, central component predicted RT. The incentivisation of RT was partly mediated by the CNV, though vigour was not. Moreover, the CNV mediated the drug’s effect on dampening incentives, suggesting that muscarinic receptors underlie the motivational influence on this preparatory activity. Taken together, these findings show that a muscarinic blocker impairs motivated action in healthy people, and that medial frontal preparatory neural activity mediates this for RT.