Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation

  1. Wen-Hao Zhang
  2. He Wang
  3. Aihua Chen
  4. Yong Gu
  5. Tai Sing Lee
  6. K Y Michael Wong  Is a corresponding author
  7. Si Wu  Is a corresponding author
  1. Hong Kong University of Science and Technology, Hong Kong
  2. East China Normal University, China
  3. Chinese Academy of Sciences, China
  4. Carnegie Mellon University, United States
  5. Peking University, China

Abstract

Our brain perceives the world by exploiting multisensory cues to extract information about various aspects of external stimuli. The sensory cues from the same stimulus should be integrated to improve perception, and otherwise segregated to distinguish different stimuli. In reality, however, the brain faces the challenge of recognizing stimuli without knowing in advance the sources of sensory cues. To address this challenge, we propose that the brain conducts integration and segregation concurrently with complementary neurons. Studying the inference of heading-direction via visual and vestibular cues, we develop a network model with two reciprocally connected modules modelling interacting visual-vestibular areas. In each module, there are two groups of neurons whose tunings under each sensory cue are either congruent or opposite. We show that congruent neurons implement integration, while opposite neurons compute cue disparity information for segregation, and the interplay between two groups of neurons achieves efficient multisensory information processing.

Data availability

The submitted manuscript presents a theoretical network modelling work. All codes used in this study has been uploaded to GitHub (https://github.com/wenhao-z/Opposite_neuron) and could be openly accessed.

Article and author information

Author details

  1. Wen-Hao Zhang

    Department of Physics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
  2. He Wang

    Department of Physics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2101-8683
  3. Aihua Chen

    Laboratory of Brain Functional Genomics, Primate Research Center, East China Normal University, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Yong Gu

    Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4437-8956
  5. Tai Sing Lee

    Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. K Y Michael Wong

    Department of Physics, Hong Kong University of Science and Technology, Hong Kong, Hong Kong
    For correspondence
    phkywong@ust.hk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7641-5024
  7. Si Wu

    School of Electronics Engineering and Computer Science, Peking University, Beijing, China
    For correspondence
    siwu@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.

Funding

Research Grants Council of Hong Kong (N HKUST606/12)

  • K Y Michael Wong

Research Grants Council of Hong Kong (605813)

  • K Y Michael Wong

Research Grants Council of Hong Kong (16322616)

  • K Y Michael Wong

Research Grants Council of Hong Kong (16306817)

  • K Y Michael Wong

National Basic Research Program of China (2014CB846101)

  • Si Wu

Natural Science Foundation of China (31261160495)

  • Si Wu

National Science Foundation (CISE1320651)

  • Tai Sing Lee

Intelligence Advanced Research Projects Activity (D16PC00007)

  • Tai Sing Lee

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,172
    views
  • 546
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Wen-Hao Zhang
  2. He Wang
  3. Aihua Chen
  4. Yong Gu
  5. Tai Sing Lee
  6. K Y Michael Wong
  7. Si Wu
(2019)
Complementary congruent and opposite neurons achieve concurrent multisensory integration and segregation
eLife 8:e43753.
https://doi.org/10.7554/eLife.43753

Share this article

https://doi.org/10.7554/eLife.43753

Further reading

    1. Neuroscience
    Franziska Auer, Katherine Nardone ... David Schoppik
    Research Article

    Cerebellar dysfunction leads to postural instability. Recent work in freely moving rodents has transformed investigations of cerebellar contributions to posture. However, the combined complexity of terrestrial locomotion and the rodent cerebellum motivate new approaches to perturb cerebellar function in simpler vertebrates. Here, we adapted a validated chemogenetic tool (TRPV1/capsaicin) to describe the role of Purkinje cells — the output neurons of the cerebellar cortex — as larval zebrafish swam freely in depth. We achieved both bidirectional control (activation and ablation) of Purkinje cells while performing quantitative high-throughput assessment of posture and locomotion. Activation modified postural control in the pitch (nose-up/nose-down) axis. Similarly, ablations disrupted pitch-axis posture and fin-body coordination responsible for climbs. Postural disruption was more widespread in older larvae, offering a window into emergent roles for the developing cerebellum in the control of posture. Finally, we found that activity in Purkinje cells could individually and collectively encode tilt direction, a key feature of postural control neurons. Our findings delineate an expected role for the cerebellum in postural control and vestibular sensation in larval zebrafish, establishing the validity of TRPV1/capsaicin-mediated perturbations in a simple, genetically tractable vertebrate. Moreover, by comparing the contributions of Purkinje cell ablations to posture in time, we uncover signatures of emerging cerebellar control of posture across early development. This work takes a major step towards understanding an ancestral role of the cerebellum in regulating postural maturation.

    1. Neuroscience
    Gáspár Oláh, Rajmund Lákovics ... Gábor Tamás
    Research Article

    Human-specific cognitive abilities depend on information processing in the cerebral cortex, where the neurons are significantly larger and their processes longer and sparser compared to rodents. We found that, in synaptically connected layer 2/3 pyramidal cells (L2/3 PCs), the delay in signal propagation from soma to soma is similar in humans and rodents. To compensate for the longer processes of neurons, membrane potential changes in human axons and/or dendrites must propagate faster. Axonal and dendritic recordings show that the propagation speed of action potentials (APs) is similar in human and rat axons, but the forward propagation of excitatory postsynaptic potentials (EPSPs) and the backward propagation of APs are 26 and 47% faster in human dendrites, respectively. Experimentally-based detailed biophysical models have shown that the key factor responsible for the accelerated EPSP propagation in human cortical dendrites is the large conductance load imposed at the soma by the large basal dendritic tree. Additionally, larger dendritic diameters and differences in cable and ion channel properties in humans contribute to enhanced signal propagation. Our integrative experimental and modeling study provides new insights into the scaling rules that help maintain information processing speed albeit the large and sparse neurons in the human cortex.