Low Wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice

  1. Fabienne Benz
  2. Viraya Wichitnaowarat
  3. Martin Lehmann
  4. Raoul F V Germano
  5. Diana Mihova
  6. Jadranka Macas
  7. Ralf H Adams
  8. M Mark Taketo
  9. Sylvaine Guérit
  10. Karl-Heinz Plate
  11. Benoit Vanhollebeke
  12. Stefan Liebner  Is a corresponding author
  1. University Hospital Frankfurt, Germany
  2. Université libre de Bruxelles, Belgium
  3. Max-Planck-Institute for Molecular Biomedicine, Germany
  4. Kyoto University, Japan

Abstract

The circumventricular organs (CVOs) in the central nervous system (CNS) lack a vascular blood-brain barrier (BBB), creating communication sites for sensory or secretory neurons, involved in body homeostasis. Wnt/β-catenin signaling is essential for BBB development and maintenance in endothelial cells (ECs) in most CNS vessels. Here we show that in mouse development, as well as in adult mouse and zebrafish, CVO ECs rendered Wnt-reporter negative, suggesting low level pathway activity. Characterization of the subfornical organ (SFO) vasculature revealed heterogenous claudin-5 (Cldn5) and Plvap/Meca32 expression indicative for tight and leaky vessels, respectively. Dominant, EC-specific β-catenin transcription in mice, converted phenotypically leaky into BBB-like vessels, by augmenting Cldn5+ vessels, stabilizing junctions and by reducing Plvap/Meca32+ and fenestrated vessels, resulting in decreased tracer permeability. Endothelial tightening augmented neuronal activity in the SFO of water restricted mice. Hence, regulating the SFO vessel barrier may influence neuronal function in the context of water homeostasis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files are provided for Figures 4F-H, 5C, 6B, 7D, 8E-F, 9C as well as in Figure 4-figure supplement 1C, Figure 4-figure supplement 3D, Figure 8-figure supplement 1B. Raw data for all quantifications are provided in a separated MS Excel documents.

Article and author information

Author details

  1. Fabienne Benz

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Viraya Wichitnaowarat

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Martin Lehmann

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Raoul F V Germano

    Laboratory of Neurovascular Signaling, Department of Molecular Biology, Université libre de Bruxelles, Bruxelles, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1247-0689
  5. Diana Mihova

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Jadranka Macas

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Ralf H Adams

    Department of Tissue Morphogenesis, Max-Planck-Institute for Molecular Biomedicine, Münster, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3031-7677
  8. M Mark Taketo

    Division of Experimental Therapeutics, Kyoto University, Kyoto, Japan
    Competing interests
    The authors declare that no competing interests exist.
  9. Sylvaine Guérit

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Karl-Heinz Plate

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Benoit Vanhollebeke

    Laboratory of Neurovascular Signaling, Department of Molecular Biology, Université libre de Bruxelles, Bruxelles, Belgium
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0353-365X
  12. Stefan Liebner

    Institute of Neurology, University Hospital Frankfurt, Frankfurt am Main, Germany
    For correspondence
    stefan.liebner@kgu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4656-2258

Funding

Horizon 2020 Framework Programme (BtRAIN)

  • Raoul F V Germano
  • Benoit Vanhollebeke
  • Stefan Liebner

Deutsche Forschungsgemeinschaft (LI 911/5-1)

  • Fabienne Benz
  • Ralf H Adams
  • Sylvaine Guérit
  • Stefan Liebner

Landes-Offensive zur Entwicklung Wissenschaftlich- ökonomischer Exzellenz Program of the Center for Personalized Translational Epilepsy Research (TP8)

  • Stefan Liebner

Goethe University Frankfurt - Line A

  • Sylvaine Guérit

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animals were housed under standard conditions and fed ad libitum. All experimental protocols, handling and use of mice were approved by the Regierungspräsidium Darmstadt, Germany (FK/1052 and FK/1108). All animal handling was performed to minimize suffering.

Copyright

© 2019, Benz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,534
    views
  • 715
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Fabienne Benz
  2. Viraya Wichitnaowarat
  3. Martin Lehmann
  4. Raoul F V Germano
  5. Diana Mihova
  6. Jadranka Macas
  7. Ralf H Adams
  8. M Mark Taketo
  9. Sylvaine Guérit
  10. Karl-Heinz Plate
  11. Benoit Vanhollebeke
  12. Stefan Liebner
(2019)
Low Wnt/β-catenin signaling determines leaky vessels in the subfornical organ and affects water homeostasis in mice
eLife 8:e43818.
https://doi.org/10.7554/eLife.43818

Share this article

https://doi.org/10.7554/eLife.43818

Further reading

    1. Developmental Biology
    2. Stem Cells and Regenerative Medicine
    Kara A Nelson, Kari F Lenhart ... Stephen DiNardo
    Research Article

    Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established. To address this, we investigated the formation of a genetically tractable niche, the Drosophila Posterior Signaling Center (PSC), the assembly of which had not been previously explored. This niche controls hematopoietic progenitors of the lymph gland (LG). PSC cells were previously shown to be specified laterally in the embryo, but ultimately reside dorsally, at the LG posterior. Here, using live-imaging, we show that PSC cells migrate as a tight collective and associate with multiple tissues during their trajectory to the LG posterior. We find that Slit emanating from two extrinsic sources, visceral mesoderm and cardioblasts, is required for the PSC to remain a collective, and for its attachment to cardioblasts during migration. Without proper Slit-Robo signaling, PSC cells disperse, form aberrant contacts, and ultimately fail to reach their stereotypical position near progenitors. Our work characterizes a novel example of niche formation and identifies an extrinsic signaling relay that controls precise niche positioning.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Elise S Bruguera, Jacob P Mahoney, William I Weis
    Research Article

    Wnt/β-catenin signaling directs animal development and tissue renewal in a tightly controlled, cell- and tissue-specific manner. In the mammalian central nervous system, the atypical ligand Norrin controls angiogenesis and maintenance of the blood-brain barrier and blood-retina barrier through the Wnt/β-catenin pathway. Like Wnt, Norrin activates signaling by binding and heterodimerizing the receptors Frizzled (Fzd) and low-density lipoprotein receptor-related protein 5 or 6 (LRP5/6), leading to membrane recruitment of the intracellular transducer Dishevelled (Dvl) and ultimately stabilizing the transcriptional coactivator β-catenin. Unlike Wnt, the cystine knot ligand Norrin only signals through Fzd4 and additionally requires the co-receptor Tetraspanin12 (Tspan12); however, the mechanism underlying Tspan12-mediated signal enhancement is unclear. It has been proposed that Tspan12 integrates into the Norrin-Fzd4 complex to enhance Norrin-Fzd4 affinity or otherwise allosterically modulate Fzd4 signaling. Here, we measure direct, high-affinity binding between purified Norrin and Tspan12 in a lipid environment and use AlphaFold models to interrogate this interaction interface. We find that Tspan12 and Fzd4 can simultaneously bind Norrin and that a pre-formed Tspan12/Fzd4 heterodimer, as well as cells co-expressing Tspan12 and Fzd4, more efficiently capture low concentrations of Norrin than Fzd4 alone. We also show that Tspan12 competes with both heparan sulfate proteoglycans and LRP6 for Norrin binding and that Tspan12 does not impact Fzd4-Dvl affinity in the presence or absence of Norrin. Our findings suggest that Tspan12 does not allosterically enhance Fzd4 binding to Norrin or Dvl, but instead functions to directly capture Norrin upstream of signaling.