Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade

  1. Emily J Lodge
  2. Alice Santambrogio
  3. John P Russell
  4. Paraskevi Xekouki
  5. Thomas S Jacques
  6. Randy L Johnson
  7. Selvam Thavaraj
  8. Stefan R Bornstein
  9. Cynthia Lilian Andoniadou  Is a corresponding author
  1. King's College London, United Kingdom
  2. Great Ormond Street Hospital for Children, United Kingdom
  3. The University of Texas, MD Anderson Cancer Center, United States
  4. University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany

Abstract

SOX2 positive pituitary stem cells (PSCs) are specified embryonically and persist throughout life, giving rise to all pituitary endocrine lineages. We have previously shown the activation of the STK/LATS/YAP/TAZ signalling cascade in the developing and postnatal mammalian pituitary. Here, we investigate the function of this pathway during pituitary development and in the regulation of the SOX2 cell compartment. Through loss- and gain-of-function genetic approaches, we reveal that restricting YAP/TAZ activation during development is essential for normal organ size and specification from SOX2+ PSCs. Postnatal deletion of LATS kinases and subsequent upregulation of YAP/TAZ leads to uncontrolled clonal expansion of the SOX2+ PSCs and disruption of their differentiation, causing the formation of non-secreting, aggressive pituitary tumours. In contrast, sustained expression of YAP alone results in expansion of SOX2+ PSCs capable of differentiation and devoid of tumourigenic potential. Our findings identify the LATS/YAP/TAZ signalling cascade as an essential component of PSC regulation in normal pituitary physiology and tumourigenesis.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Emily J Lodge

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0932-8515
  2. Alice Santambrogio

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. John P Russell

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Paraskevi Xekouki

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Thomas S Jacques

    Department of Histopathology, Great Ormond Street Hospital for Children, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Randy L Johnson

    Department of Cancer Biology, The University of Texas, MD Anderson Cancer Center, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Selvam Thavaraj

    Centre for Oral, Clinical and Translational Sciences, King's College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Stefan R Bornstein

    Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
    Competing interests
    The authors declare that no competing interests exist.
  9. Cynthia Lilian Andoniadou

    Centre for Craniofacial and Regenerative Biology, King's College London, London, United Kingdom
    For correspondence
    cynthia.andoniadou@kcl.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4311-5855

Funding

Medical Research Council (MR/L016729/1)

  • Cynthia Lilian Andoniadou

Lister Institute of Preventive Medicine (Prize Fellowship 2016)

  • Cynthia Lilian Andoniadou

Deutsche Forschungsgemeinschaft (CRC/Transregio 205/1)

  • Stefan R Bornstein
  • Cynthia Lilian Andoniadou

Guy's and St Thomas' Charity (Prize PhD Programme)

  • Emily J Lodge

Deutsche Forschungsgemeinschaft (GRK 2251)

  • Stefan R Bornstein
  • Cynthia Lilian Andoniadou

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in accordance to UK Home Office Regulations and experimental procedures were approved by the King's College Ethical Review Process.

Copyright

© 2019, Lodge et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,605
    views
  • 440
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Emily J Lodge
  2. Alice Santambrogio
  3. John P Russell
  4. Paraskevi Xekouki
  5. Thomas S Jacques
  6. Randy L Johnson
  7. Selvam Thavaraj
  8. Stefan R Bornstein
  9. Cynthia Lilian Andoniadou
(2019)
Homeostatic and tumourigenic activity of SOX2+ pituitary stem cells is controlled by the LATS/YAP/TAZ cascade
eLife 8:e43996.
https://doi.org/10.7554/eLife.43996

Share this article

https://doi.org/10.7554/eLife.43996

Further reading

    1. Stem Cells and Regenerative Medicine
    Mami Matsuo-Takasaki, Sho Kambayashi ... Yohei Hayashi
    Tools and Resources

    Human induced pluripotent stem cells (hiPSCs) are promising resources for producing various types of tissues in regenerative medicine; however, the improvement in a scalable culture system that can precisely control the cellular status of hiPSCs is needed. Utilizing suspension culture without microcarriers or special materials allows for massive production, automation, cost-effectiveness, and safety assurance in industrialized regenerative medicine. Here, we found that hiPSCs cultured in suspension conditions with continuous agitation without microcarriers or extracellular matrix components were more prone to spontaneous differentiation than those cultured in conventional adherent conditions. Adding PKCβ and Wnt signaling pathway inhibitors in the suspension conditions suppressed the spontaneous differentiation of hiPSCs into ectoderm and mesendoderm, respectively. In these conditions, we successfully completed the culture processes of hiPSCs, including the generation of hiPSCs from peripheral blood mononuclear cells with the expansion of bulk population and single-cell sorted clones, long-term culture with robust self-renewal characteristics, single-cell cloning, direct cryopreservation from suspension culture and their successful recovery, and efficient mass production of a clinical-grade hiPSC line. Our results demonstrate that precise control of the cellular status in suspension culture conditions paves the way for their stable and automated clinical application.

    1. Stem Cells and Regenerative Medicine
    Wenxin Ma, Lian Zhao ... Wei Li
    Research Article

    Microglia exhibit both maladaptive and adaptive roles in the pathogenesis of neurodegenerative diseases and have emerged as a cellular target for central nervous system (CNS) disorders, including those affecting the retina. Replacing maladaptive microglia, such as those impacted by aging or over-activation, with exogenous microglia that can enable adaptive functions has been proposed as a potential therapeutic strategy for neurodegenerative diseases. To investigate microglia replacement as an approach for retinal diseases, we first employed a protocol to efficiently generate human-induced pluripotent stem cell (hiPSC)-derived microglia in quantities sufficient for in vivo transplantation. These cells demonstrated expression of microglia-enriched genes and showed typical microglial functions such as LPS-induced responses and phagocytosis. We then performed xenotransplantation of these hiPSC-derived microglia into the subretinal space of adult mice whose endogenous retinal microglia have been pharmacologically depleted. Long-term analysis post-transplantation demonstrated that transplanted hiPSC-derived microglia successfully integrated into the neuroretina as ramified cells, occupying positions previously filled by the endogenous microglia and expressed microglia homeostatic markers such as P2ry12 and Tmem119. Furthermore, these cells were found juxtaposed alongside residual endogenous murine microglia for up to 8 months in the retina, indicating their ability to establish a stable homeostatic state in vivo. Following retinal pigment epithelial cell injury, transplanted microglia demonstrated responses typical of endogenous microglia, including migration, proliferation, and phagocytosis. Our findings indicate the feasibility of microglial transplantation and integration in the retina and suggest that modulating microglia through replacement may be a therapeutic strategy for treating neurodegenerative retinal diseases.