Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction

Abstract

The brain regulates fertility through gonadotropin-releasing hormone (GnRH) neurons. Estradiol induces negative feedback on pulsatile GnRH/luteinizing hormone (LH) release and positive feedback generating preovulatory GnRH/LH surges. Negative and positive feedback are postulated to be mediated by kisspeptin neurons in arcuate and anteroventral periventricular (AVPV) nuclei, respectively. Kisspeptin-specific ERα knockout mice exhibit disrupted LH pulses and surges. This knockout approach is neither location-specific nor temporally-controlled. We utilized CRISPR-Cas9 to disrupt ERα in adulthood. Mice with ERα disruption in AVPV kisspeptin neurons have typical reproductive cycles but blunted LH surges, associated with decreased excitability of these neurons. Mice with ERα knocked down in arcuate kisspeptin neurons showed disrupted cyclicity, associated with increased glutamatergic transmission to these neurons. These observations suggest activational effects of estradiol regulate surge generation and maintain cyclicity through AVPV and arcuate kisspeptin neurons, respectively, independent from its role in the development of hypothalamic kisspeptin neurons or puberty onset.

Data availability

No new dataset is generated or used in the current study.

Article and author information

Author details

  1. Luhong Wang

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Charlotte Vanacker

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Laura L Burger

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tammy Barnes

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yatrik M Shah

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Martin G Myers

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Suzanne M Moenter

    Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
    For correspondence
    smoenter@umich.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9812-0497

Funding

Eunice Kennedy Shriver National Institute of Child Health and Human Development (Principle Investigator Grants)

  • Suzanne M Moenter

National Institute of Diabetes and Digestive and Kidney Diseases (Center Core Grants)

  • Martin G Myers

Eunice Kennedy Shriver National Institute of Child Health and Human Development (Center Core Grants)

  • Suzanne M Moenter

National Institute of Diabetes and Digestive and Kidney Diseases (Principle Investigator Grants)

  • Yatrik M Shah

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (Pro 000006816 and Pro000008797) of the University of Michigan. The protocol was approved by the University of Michigan Institutional Animal Care and Use Committee. Every effort was made to minimize suffering.

Copyright

© 2019, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,839
    views
  • 563
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Luhong Wang
  2. Charlotte Vanacker
  3. Laura L Burger
  4. Tammy Barnes
  5. Yatrik M Shah
  6. Martin G Myers
  7. Suzanne M Moenter
(2019)
Genetic dissection of the different roles of hypothalamic kisspeptin neurons in regulating female reproduction
eLife 8:e43999.
https://doi.org/10.7554/eLife.43999

Share this article

https://doi.org/10.7554/eLife.43999

Further reading

    1. Neuroscience
    Hannah R Martin, Anna Lysakowski, Ruth Anne Eatock
    Research Article

    In amniotes, head motions and tilt are detected by two types of vestibular hair cells (HCs) with strikingly different morphology and physiology. Mature type I HCs express a large and very unusual potassium conductance, gK,L, which activates negative to resting potential, confers very negative resting potentials and low input resistances, and enhances an unusual non-quantal transmission from type I cells onto their calyceal afferent terminals. Following clues pointing to KV1.8 (Kcna10) in the Shaker K channel family as a candidate gK,L subunit, we compared whole-cell voltage-dependent currents from utricular HCs of KV1.8-null mice and littermate controls. We found that KV1.8 is necessary not just for gK,L but also for fast-inactivating and delayed rectifier currents in type II HCs, which activate positive to resting potential. The distinct properties of the three KV1.8-dependent conductances may reflect different mixing with other KV subunits that are reported to be differentially expressed in type I and II HCs. In KV1.8-null HCs of both types, residual outwardly rectifying conductances include KV7 (Knq) channels. Current clamp records show that in both HC types, KV1.8-dependent conductances increase the speed and damping of voltage responses. Features that speed up vestibular receptor potentials and non-quantal afferent transmission may have helped stabilize locomotion as tetrapods moved from water to land.

    1. Cell Biology
    2. Neuroscience
    Lizbeth de La Cruz, Derek Bui ... Oscar Vivas
    Research Article

    Overactivity of the sympathetic nervous system is a hallmark of aging. The cellular mechanisms behind this overactivity remain poorly understood, with most attention paid to likely central nervous system components. In this work, we hypothesized that aging also affects the function of motor neurons in the peripheral sympathetic ganglia. To test this hypothesis, we compared the electrophysiological responses and ion-channel activity of neurons isolated from the superior cervical ganglia of young (12 weeks), middle-aged (64 weeks), and old (115 weeks) mice. These approaches showed that aging does impact the intrinsic properties of sympathetic motor neurons, increasing spontaneous and evoked firing responses. A reduction of M current emerged as a major contributor to age-related hyperexcitability. Thus, it is essential to consider the effect of aging on motor components of the sympathetic reflex as a crucial part of the mechanism involved in sympathetic overactivity.