Regulation of cilia abundance in multiciliated cells

  1. Rashmi Nanjundappa
  2. Dong Kong
  3. Kyuhwan Shim
  4. Tim Stearns
  5. Steven L Brody
  6. Jadranka Loncarek
  7. Moe R Mahjoub  Is a corresponding author
  1. Washington University in St Louis, United States
  2. National Cancer Institute, National Institutes of Health, United States
  3. Stanford University, United States

Abstract

Multiciliated cells (MCC) contain hundreds of motile cilia used to propel fluid over their surface. To template these cilia, each MCC produces between 100-600 centrioles by a process termed centriole amplification. Yet, how MCC regulate the precise number of centrioles and cilia remains unknown. Airway progenitor cells contain two parental centrioles (PC) and form structures called deuterosomes that nucleate centrioles during amplification. Using an ex vivo airway culture model, we show that ablation of PC does not perturb deuterosome formation and centriole amplification. In contrast, loss of PC caused an increase in deuterosome and centriole abundance, highlighting the presence of a compensatory mechanism. Quantification of centriole abundance in vitro and in vivo identified a linear relationship between surface area and centriole number. By manipulating cell size, we discovered that centriole number scales with surface area. Our results demonstrate that a cell-intrinsic surface area-dependent mechanism controls centriole and cilia abundance in multiciliated cells.

Data availability

All data generated or analysed during this study are included in the manuscript

Article and author information

Author details

  1. Rashmi Nanjundappa

    Department of Medicine (Nephrology Division), Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3621-4628
  2. Dong Kong

    Laboratory of Protein Dynamics and Signaling, Center for Cancer Research - Frederick, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kyuhwan Shim

    Department of Medicine (Nephrology Division), Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tim Stearns

    Department of Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0671-6582
  5. Steven L Brody

    Department of Medicine (Pulmonary Division), Washington University in St Louis, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jadranka Loncarek

    Laboratory of Protein Dynamics and Signaling, Center for Cancer Research - Frederick, National Cancer Institute, National Institutes of Health, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Moe R Mahjoub

    Department of Medicine (Nephrology Division), Washington University in St Louis, St Louis, United States
    For correspondence
    mmahjoub@wustl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8129-7464

Funding

National Heart, Lung, and Blood Institute (R01-HL128370)

  • Steven L Brody
  • Moe R Mahjoub

National Institute of Diabetes and Digestive and Kidney Diseases (R01-DK108005)

  • Moe R Mahjoub

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. Moreover, the experiments were performed following approved protocols that are compliant with guidelines of the Institutional Animal Care and Use Committee at Washington University (approval # 20180237) . Mice were euthanized using carbon dioxide inhalation followed by cervical dislocation, and every effort was made to minimize suffering and distress.

Copyright

© 2019, Nanjundappa et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,192
    views
  • 661
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rashmi Nanjundappa
  2. Dong Kong
  3. Kyuhwan Shim
  4. Tim Stearns
  5. Steven L Brody
  6. Jadranka Loncarek
  7. Moe R Mahjoub
(2019)
Regulation of cilia abundance in multiciliated cells
eLife 8:e44039.
https://doi.org/10.7554/eLife.44039

Share this article

https://doi.org/10.7554/eLife.44039

Further reading

    1. Cell Biology
    Surya Bansi Singh, Shatruhan Singh Rajput ... Deepa Subramanyam
    Research Article

    Aggregation of mutant forms of Huntingtin is the underlying feature of neurodegeneration observed in Huntington's disorder. In addition to neurons, cellular processes in non-neuronal cell types are also shown to be affected. Cells expressing neurodegeneration-associated mutant proteins show altered uptake of ligands, suggestive of impaired endocytosis, in a manner as yet unknown. Using live cell imaging, we show that clathrin-mediated endocytosis (CME) is affected in Drosophila hemocytes and mammalian cells containing Huntingtin aggregates. This is also accompanied by alterations in the organization of the actin cytoskeleton resulting in increased cellular stiffness. Further, we find that Huntingtin aggregates sequester actin and actin-modifying proteins. Overexpression of Hip1 or Arp3 (actin-interacting proteins) could restore CME and cellular stiffness in cells containing Huntingtin aggregates. Neurodegeneration driven by pathogenic Huntingtin was also rescued upon overexpression of either Hip1 or Arp3 in Drosophila. Examination of other pathogenic aggregates revealed that TDP-43 also displayed defective CME, altered actin organization and increased stiffness, similar to pathogenic Huntingtin. Together, our results point to an intimate connection between dysfunctional CME, actin misorganization and increased cellular stiffness caused by alteration in the local intracellular environment by pathogenic aggregates.

    1. Cell Biology
    2. Developmental Biology
    Evgenia Leikina, Jarred M Whitlock ... Leonid Chernomordik
    Research Article

    The bone-resorbing activity of osteoclasts plays a critical role in the life-long remodeling of our bones that is perturbed in many bone loss diseases. Multinucleated osteoclasts are formed by the fusion of precursor cells, and larger cells – generated by an increased number of cell fusion events – have higher resorptive activity. We find that osteoclast fusion and bone resorption are promoted by reactive oxygen species (ROS) signaling and by an unconventional low molecular weight species of La protein, located at the osteoclast surface. Here, we develop the hypothesis that La’s unique regulatory role in osteoclast multinucleation and function is controlled by an ROS switch in La trafficking. Using antibodies that recognize reduced or oxidized species of La, we find that differentiating osteoclasts enrich an oxidized species of La at the cell surface, which is distinct from the reduced La species conventionally localized within cell nuclei. ROS signaling triggers the shift from reduced to oxidized La species, its dephosphorylation and delivery to the surface of osteoclasts, where La promotes multinucleation and resorptive activity. Moreover, intracellular ROS signaling in differentiating osteoclasts oxidizes critical cysteine residues in the C-terminal half of La, producing this unconventional La species that promotes osteoclast fusion. Our findings suggest that redox signaling induces changes in the location and function of La and may represent a promising target for novel skeletal therapies.