Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation

  1. Haleh Fotowat  Is a corresponding author
  2. Candice Lee
  3. James Jaeyoon Jun
  4. Len Maler
  1. Harvard University, United States
  2. University of Ottawa, Canada
  3. Flatiron Institute, United States

Abstract

Most vertebrates use active sensing strategies for perception, cognition and control of motor activity. These strategies include directed body/sensor movements or increases in discrete sensory sampling events. The weakly electric fish, Gymnotus sp., uses its active electric sense during navigation in the dark. Electric organ discharge rate undergoes transient increases during navigation to increase electrosensory sampling. Gymnotus also use stereotyped backward swimming as an important form of active sensing that brings objects towards the electroreceptor dense fovea-like head region. We wirelessly recorded neural activity from the pallium of freely swimming Gymnotus. Spiking activity was sparse and occurred only during swimming. Notably, most units tended to fire during backward swims and their activity was on average coupled to increases in sensory sampling. Our results provide the first characterization of neural activity in a hippocampal (CA3)-like region of a teleost fish brain and connects it to active sensing of spatial environmental features.

Data availability

Data sets and analysis files have been deposited in University of Ottawa's Institutional repository.

The following data sets were generated

Article and author information

Author details

  1. Haleh Fotowat

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    halehfotowat@fas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0372-4912
  2. Candice Lee

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. James Jaeyoon Jun

    Center for Computational Mathematics, Flatiron Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Len Maler

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7666-2754

Funding

Natural Sciences and Engineering Research Council of Canada (04336)

  • Len Maler

Canadian Institutes of Health Research (153143)

  • Len Maler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed in accordance with the regulations of the animal care committee of the University of Ottawa, protocol number CMM-2897.

Copyright

© 2019, Fotowat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,729
    views
  • 379
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haleh Fotowat
  2. Candice Lee
  3. James Jaeyoon Jun
  4. Len Maler
(2019)
Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation
eLife 8:e44119.
https://doi.org/10.7554/eLife.44119

Share this article

https://doi.org/10.7554/eLife.44119

Further reading

    1. Neuroscience
    GVS Devakinandan, Mark Terasaki, Adish Dani
    Research Article

    Specialized chemosensory signals elicit innate social behaviors in individuals of several vertebrate species, a process that is mediated via the accessory olfactory system (AOS). The AOS comprising the peripheral sensory vomeronasal organ has evolved elaborate molecular and cellular mechanisms to detect chemo signals. To gain insight into the cell types, developmental gene expression patterns, and functional differences amongst neurons, we performed single-cell transcriptomics of the mouse vomeronasal sensory epithelium. Our analysis reveals diverse cell types with gene expression patterns specific to each, which we made available as a searchable web resource accessed from https://www.scvnoexplorer.com. Pseudo-time developmental analysis indicates that neurons originating from common progenitors diverge in their gene expression during maturation with transient and persistent transcription factor expression at critical branch points. Comparative analysis across two of the major neuronal subtypes that express divergent GPCR families and the G-protein subunits Gnai2 or Gnao1, reveals significantly higher expression of endoplasmic reticulum (ER) associated genes within Gnao1 neurons. In addition, differences in ER content and prevalence of cubic membrane ER ultrastructure revealed by electron microscopy, indicate fundamental differences in ER function.

    1. Medicine
    2. Neuroscience
    Chi Zhang, Qian Huang ... Yun Guan
    Research Article

    Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.