Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation

  1. Haleh Fotowat  Is a corresponding author
  2. Candice Lee
  3. James Jaeyoon Jun
  4. Len Maler
  1. Harvard University, United States
  2. University of Ottawa, Canada
  3. Flatiron Institute, United States

Abstract

Most vertebrates use active sensing strategies for perception, cognition and control of motor activity. These strategies include directed body/sensor movements or increases in discrete sensory sampling events. The weakly electric fish, Gymnotus sp., uses its active electric sense during navigation in the dark. Electric organ discharge rate undergoes transient increases during navigation to increase electrosensory sampling. Gymnotus also use stereotyped backward swimming as an important form of active sensing that brings objects towards the electroreceptor dense fovea-like head region. We wirelessly recorded neural activity from the pallium of freely swimming Gymnotus. Spiking activity was sparse and occurred only during swimming. Notably, most units tended to fire during backward swims and their activity was on average coupled to increases in sensory sampling. Our results provide the first characterization of neural activity in a hippocampal (CA3)-like region of a teleost fish brain and connects it to active sensing of spatial environmental features.

Data availability

Data sets and analysis files have been deposited in University of Ottawa's Institutional repository.

The following data sets were generated

Article and author information

Author details

  1. Haleh Fotowat

    Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
    For correspondence
    halehfotowat@fas.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0372-4912
  2. Candice Lee

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. James Jaeyoon Jun

    Center for Computational Mathematics, Flatiron Institute, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Len Maler

    Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7666-2754

Funding

Natural Sciences and Engineering Research Council of Canada (04336)

  • Len Maler

Canadian Institutes of Health Research (153143)

  • Len Maler

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed in accordance with the regulations of the animal care committee of the University of Ottawa, protocol number CMM-2897.

Copyright

© 2019, Fotowat et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,741
    views
  • 383
    downloads
  • 55
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Haleh Fotowat
  2. Candice Lee
  3. James Jaeyoon Jun
  4. Len Maler
(2019)
Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation
eLife 8:e44119.
https://doi.org/10.7554/eLife.44119

Share this article

https://doi.org/10.7554/eLife.44119

Further reading

    1. Neuroscience
    Geoffrey W Meissner, Allison Vannan ... FlyLight Project Team
    Research Article

    Techniques that enable precise manipulations of subsets of neurons in the fly central nervous system (CNS) have greatly facilitated our understanding of the neural basis of behavior. Split-GAL4 driver lines allow specific targeting of cell types in Drosophila melanogaster and other species. We describe here a collection of 3060 lines targeting a range of cell types in the adult Drosophila CNS and 1373 lines characterized in third-instar larvae. These tools enable functional, transcriptomic, and proteomic studies based on precise anatomical targeting. NeuronBridge and other search tools relate light microscopy images of these split-GAL4 lines to connectomes reconstructed from electron microscopy images. The collections are the result of screening over 77,000 split hemidriver combinations. Previously published and new lines are included, all validated for driver expression and curated for optimal cell-type specificity across diverse cell types. In addition to images and fly stocks for these well-characterized lines, we make available 300,000 new 3D images of other split-GAL4 lines.

    1. Neuroscience
    Hyun Jee Lee, Jingting Liang ... Hang Lu
    Research Advance

    Cell identification is an important yet difficult process in data analysis of biological images. Previously, we developed an automated cell identification method called CRF_ID and demonstrated its high performance in Caenorhabditis elegans whole-brain images (Chaudhary et al., 2021). However, because the method was optimized for whole-brain imaging, comparable performance could not be guaranteed for application in commonly used C. elegans multi-cell images that display a subpopulation of cells. Here, we present an advancement, CRF_ID 2.0, that expands the generalizability of the method to multi-cell imaging beyond whole-brain imaging. To illustrate the application of the advance, we show the characterization of CRF_ID 2.0 in multi-cell imaging and cell-specific gene expression analysis in C. elegans. This work demonstrates that high-accuracy automated cell annotation in multi-cell imaging can expedite cell identification and reduce its subjectivity in C. elegans and potentially other biological images of various origins.