Ventral hippocampal projections to the medial prefrontal cortex regulate social memory

  1. Mary L Phillips
  2. Holly Anne Robinson
  3. Lucas Pozzo-Miller  Is a corresponding author
  1. University of Alabama at Birmingham, United States

Abstract

Inputs from the ventral hippocampus (vHIP) to the medial prefrontal cortex (mPFC) are implicated in several neuropsychiatric disorders. Here, we show that the vHIP-mPFC projection is hyperactive in the Mecp2 knockout mouse model of the autism spectrum disorder Rett syndrome, which has deficits in social memory. Long-term excitation of mPFC-projecting vHIP neurons in wild-type mice impaired social memory, whereas their long-term inhibition in Rett mice rescued social memory deficits. The extent of social memory improvement was negatively correlated with vHIP-evoked responses in mPFC slices, on a mouse-per-mouse basis. Acute manipulations of the vHIP-mPFC projection affected social memory in a region and behavior selective manner, suggesting that proper vHIP-mPFC signaling is necessary to recall social memories. In addition, we identified an altered pattern of vHIP innervation of mPFC neurons, and increased synaptic strength of vHIP inputs onto layer 5 pyramidal neurons as contributing factors of aberrant vHIP-mPFC signaling in Rett mice.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Mary L Phillips

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4696-1555
  2. Holly Anne Robinson

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lucas Pozzo-Miller

    Department of Neurobiology, University of Alabama at Birmingham, Birmingham, United States
    For correspondence
    lucaspm@uab.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6085-5527

Funding

NIH Office of the Director (R56-NS103089-01A1)

  • Lucas Pozzo-Miller

Civitan International (Civitan Emerging Scholar: W John Rynearson Award)

  • Mary L Phillips

International Rett Syndrome Foundation

  • Lucas Pozzo-Miller

NIH Office of the Director (T32-NS061788-04)

  • Mary L Phillips

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Lisa M Monteggia, Vanderbilt University, United States

Ethics

Animal experimentation: Mice were handled and housed according to the Committee on Laboratory Animal Resources of the National Institutes of Health. All experimental protocols were reviewed and approved annually by the Institutional Animals Care and Use Committee of the University of Alabama at Birmingham (IACUC-20114).

Version history

  1. Received: December 6, 2018
  2. Accepted: May 17, 2019
  3. Accepted Manuscript published: May 21, 2019 (version 1)
  4. Version of Record published: May 30, 2019 (version 2)

Copyright

© 2019, Phillips et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,455
    views
  • 1,516
    downloads
  • 128
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mary L Phillips
  2. Holly Anne Robinson
  3. Lucas Pozzo-Miller
(2019)
Ventral hippocampal projections to the medial prefrontal cortex regulate social memory
eLife 8:e44182.
https://doi.org/10.7554/eLife.44182

Share this article

https://doi.org/10.7554/eLife.44182

Further reading

    1. Neuroscience
    Mohsen Sadeghi, Reza Sharif Razavian ... Dagmar Sternad
    Research Article

    Natural behaviors have redundancy, which implies that humans and animals can achieve their goals with different strategies. Given only observations of behavior, is it possible to infer the control objective that the subject is employing? This challenge is particularly acute in animal behavior because we cannot ask or instruct the subject to use a particular strategy. This study presents a three-pronged approach to infer an animal’s control objective from behavior. First, both humans and monkeys performed a virtual balancing task for which different control strategies could be utilized. Under matched experimental conditions, corresponding behaviors were observed in humans and monkeys. Second, a generative model was developed that represented two main control objectives to achieve the task goal. Model simulations were used to identify aspects of behavior that could distinguish which control objective was being used. Third, these behavioral signatures allowed us to infer the control objective used by human subjects who had been instructed to use one control objective or the other. Based on this validation, we could then infer objectives from animal subjects. Being able to positively identify a subject’s control objective from observed behavior can provide a powerful tool to neurophysiologists as they seek the neural mechanisms of sensorimotor coordination.

    1. Neuroscience
    Yiyi Chen, Laimdota Zizmare ... Christoph Trautwein
    Research Article

    The retina consumes massive amounts of energy, yet its metabolism and substrate exploitation remain poorly understood. Here, we used a murine explant model to manipulate retinal energy metabolism under entirely controlled conditions and utilised 1H-NMR spectroscopy-based metabolomics, in situ enzyme detection, and cell viability readouts to uncover the pathways of retinal energy production. Our experimental manipulations resulted in varying degrees of photoreceptor degeneration, while the inner retina and retinal pigment epithelium were essentially unaffected. This selective vulnerability of photoreceptors suggested very specific adaptations in their energy metabolism. Rod photoreceptors were found to rely strongly on oxidative phosphorylation, but only mildly on glycolysis. Conversely, cone photoreceptors were dependent on glycolysis but insensitive to electron transport chain decoupling. Importantly, photoreceptors appeared to uncouple glycolytic and Krebs-cycle metabolism via three different pathways: (1) the mini-Krebs-cycle, fuelled by glutamine and branched chain amino acids, generating N-acetylaspartate; (2) the alanine-generating Cahill-cycle; (3) the lactate-releasing Cori-cycle. Moreover, the metabolomics data indicated a shuttling of taurine and hypotaurine between the retinal pigment epithelium and photoreceptors, likely resulting in an additional net transfer of reducing power to photoreceptors. These findings expand our understanding of retinal physiology and pathology and shed new light on neuronal energy homeostasis and the pathogenesis of neurodegenerative diseases.