Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate

Abstract

Cerebrospinal fluid (CSF) flows through the brain, transporting chemical signals and removing waste. CSF production in the brain is balanced by a constant outflow of CSF, the anatomical basis of which is poorly understood. Here we characterized the anatomy and physiological function of the CSF outflow pathway along the olfactory sensory nerves through the cribriform plate, and into the nasal epithelia. Chemical ablation of olfactory sensory nerves greatly reduced outflow of CSF through the cribriform plate. The reduction in CSF outflow did not cause an increase in intracranial pressure (ICP), consistent with an alteration in the pattern of CSF drainage or production. Our results suggest that damage to olfactory sensory neurons (such as from air pollution) could contribute to altered CSF turnover and flow, providing a potential mechanism for neurological diseases.

Data availability

All raw data is plotted in the figures. ICP data and code (Figure 10) is included in a .zip file. Code for the analysis of actograms is available here: https://github.com/DrewLab/MedAssociates_WheelActivity

Article and author information

Author details

  1. Jordan N Norwood

    Cellular and Developmental Biology Graduate Program, Pennsylvania State University, University Park, United States
    For correspondence
    jnn120@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Qingguang Zhang

    Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4500-813X
  3. David Card

    Department of Physics, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amanda Craine

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Timothy M Ryan

    Department of Anthropology, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Patrick J Drew

    Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States
    For correspondence
    pjd17@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7483-7378

Funding

National Science Foundation (CBET1705854)

  • Patrick J Drew

National Institutes of Health (F31NS105461)

  • Jordan N Norwood

McKnight Endowment Fund for Neuroscience

  • Patrick J Drew

National Institutes of Health (R01NS078168)

  • Patrick J Drew

National Institutes of Health (P01HD078233)

  • Patrick J Drew

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ronald L Calabrese, Emory University, United States

Ethics

Animal experimentation: The protocols used in this study were approved by the Institutional Animal Care and Use Committee (IACUC) at the Pennsylvania State University

Version history

  1. Received: December 10, 2018
  2. Accepted: May 6, 2019
  3. Accepted Manuscript published: May 7, 2019 (version 1)
  4. Version of Record published: May 17, 2019 (version 2)

Copyright

© 2019, Norwood et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,238
    views
  • 758
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordan N Norwood
  2. Qingguang Zhang
  3. David Card
  4. Amanda Craine
  5. Timothy M Ryan
  6. Patrick J Drew
(2019)
Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate
eLife 8:e44278.
https://doi.org/10.7554/eLife.44278

Share this article

https://doi.org/10.7554/eLife.44278

Further reading

    1. Neuroscience
    Elissavet Chartampila, Karim S Elayouby ... Helen E Scharfman
    Research Article

    Maternal choline supplementation (MCS) improves cognition in Alzheimer’s disease (AD) models. However, the effects of MCS on neuronal hyperexcitability in AD are unknown. We investigated the effects of MCS in a well-established mouse model of AD with hyperexcitability, the Tg2576 mouse. The most common type of hyperexcitability in Tg2576 mice are generalized EEG spikes (interictal spikes [IIS]). IIS also are common in other mouse models and occur in AD patients. In mouse models, hyperexcitability is also reflected by elevated expression of the transcription factor ∆FosB in the granule cells (GCs) of the dentate gyrus (DG), which are the principal cell type. Therefore, we studied ΔFosB expression in GCs. We also studied the neuronal marker NeuN within hilar neurons of the DG because reduced NeuN protein expression is a sign of oxidative stress or other pathology. This is potentially important because hilar neurons regulate GC excitability. Tg2576 breeding pairs received a diet with a relatively low, intermediate, or high concentration of choline. After weaning, all mice received the intermediate diet. In offspring of mice fed the high choline diet, IIS frequency declined, GC ∆FosB expression was reduced, and hilar NeuN expression was restored. Using the novel object location task, spatial memory improved. In contrast, offspring exposed to the relatively low choline diet had several adverse effects, such as increased mortality. They had the weakest hilar NeuN immunoreactivity and greatest GC ΔFosB protein expression. However, their IIS frequency was low, which was surprising. The results provide new evidence that a diet high in choline in early life can improve outcomes in a mouse model of AD, and relatively low choline can have mixed effects. This is the first study showing that dietary choline can regulate hyperexcitability, hilar neurons, ΔFosB, and spatial memory in an animal model of AD.

    1. Neuroscience
    Guozheng Feng, Yiwen Wang ... Ni Shu
    Research Article

    Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7–21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC–FC coupling. Our findings revealed that SC–FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC–FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC–FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC–FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC–FC coupling in typical development.