Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate

Abstract

Cerebrospinal fluid (CSF) flows through the brain, transporting chemical signals and removing waste. CSF production in the brain is balanced by a constant outflow of CSF, the anatomical basis of which is poorly understood. Here we characterized the anatomy and physiological function of the CSF outflow pathway along the olfactory sensory nerves through the cribriform plate, and into the nasal epithelia. Chemical ablation of olfactory sensory nerves greatly reduced outflow of CSF through the cribriform plate. The reduction in CSF outflow did not cause an increase in intracranial pressure (ICP), consistent with an alteration in the pattern of CSF drainage or production. Our results suggest that damage to olfactory sensory neurons (such as from air pollution) could contribute to altered CSF turnover and flow, providing a potential mechanism for neurological diseases.

Data availability

All raw data is plotted in the figures. ICP data and code (Figure 10) is included in a .zip file. Code for the analysis of actograms is available here: https://github.com/DrewLab/MedAssociates_WheelActivity

Article and author information

Author details

  1. Jordan N Norwood

    Cellular and Developmental Biology Graduate Program, Pennsylvania State University, University Park, United States
    For correspondence
    jnn120@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Qingguang Zhang

    Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4500-813X
  3. David Card

    Department of Physics, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Amanda Craine

    Department of Biomedical Engineering, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Timothy M Ryan

    Department of Anthropology, Pennsylvania State University, University Park, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Patrick J Drew

    Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, United States
    For correspondence
    pjd17@psu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7483-7378

Funding

National Science Foundation (CBET1705854)

  • Patrick J Drew

National Institutes of Health (F31NS105461)

  • Jordan N Norwood

McKnight Endowment Fund for Neuroscience

  • Patrick J Drew

National Institutes of Health (R01NS078168)

  • Patrick J Drew

National Institutes of Health (P01HD078233)

  • Patrick J Drew

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The protocols used in this study were approved by the Institutional Animal Care and Use Committee (IACUC) at the Pennsylvania State University

Copyright

© 2019, Norwood et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,647
    views
  • 806
    downloads
  • 94
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jordan N Norwood
  2. Qingguang Zhang
  3. David Card
  4. Amanda Craine
  5. Timothy M Ryan
  6. Patrick J Drew
(2019)
Anatomical basis and physiological role of cerebrospinal fluid transport through the murine cribriform plate
eLife 8:e44278.
https://doi.org/10.7554/eLife.44278

Share this article

https://doi.org/10.7554/eLife.44278

Further reading

    1. Neuroscience
    Gaqi Tu, Peiying Wen ... Kaori Takehara-Nishiuchi
    Research Article

    Outcomes can vary even when choices are repeated. Such ambiguity necessitates adjusting how much to learn from each outcome by tracking its variability. The medial prefrontal cortex (mPFC) has been reported to signal the expected outcome and its discrepancy from the actual outcome (prediction error), two variables essential for controlling the learning rate. However, the source of signals that shape these coding properties remains unknown. Here, we investigated the contribution of cholinergic projections from the basal forebrain because they carry precisely timed signals about outcomes. One-photon calcium imaging revealed that as mice learned different probabilities of threat occurrence on two paths, some mPFC cells responded to threats on one of the paths, while other cells gained responses to threat omission. These threat- and omission-evoked responses were scaled to the unexpectedness of outcomes, some exhibiting a reversal in response direction when encountering surprising threats as opposed to surprising omissions. This selectivity for signed prediction errors was enhanced by optogenetic stimulation of local cholinergic terminals during threats. The enhanced threat-evoked cholinergic signals also made mice erroneously abandon the correct choice after a single threat that violated expectations, thereby decoupling their path choice from the history of threat occurrence on each path. Thus, acetylcholine modulates the encoding of surprising outcomes in the mPFC to control how much they dictate future decisions.

    1. Neuroscience
    Philipp S O'Neill, Martín Baccino-Calace ... Igor Delvendahl
    Tools and Resources

    Quantitative information about synaptic transmission is key to our understanding of neural function. Spontaneously occurring synaptic events carry fundamental information about synaptic function and plasticity. However, their stochastic nature and low signal-to-noise ratio present major challenges for the reliable and consistent analysis. Here, we introduce miniML, a supervised deep learning-based method for accurate classification and automated detection of spontaneous synaptic events. Comparative analysis using simulated ground-truth data shows that miniML outperforms existing event analysis methods in terms of both precision and recall. miniML enables precise detection and quantification of synaptic events in electrophysiological recordings. We demonstrate that the deep learning approach generalizes easily to diverse synaptic preparations, different electrophysiological and optical recording techniques, and across animal species. miniML provides not only a comprehensive and robust framework for automated, reliable, and standardized analysis of synaptic events, but also opens new avenues for high-throughput investigations of neural function and dysfunction.