Abstract

In abstinent drug addicts, cues formerly associated with drug-taking experiences gain relapse-inducing potency ('incubate') over time. Animal models of incubation may help develop treatments to prevent relapse, but these models have ubiquitously focused on the role of conditioned stimuli (CSs) signaling drug delivery. Discriminative stimuli (DSs) are unique in that they exert stimulus-control over both drug taking and drug seeking behavior and are difficult to extinguish. For this reason, incubation of the excitatory effects of DSs that signal drug availability, not yet examined in preclinical studies, could be relevant to relapse prevention. We trained rats to self-administer cocaine (or palatable food) under DS control, then investigated DS-controlled incubation of craving, in the absence of drug-paired CSs. DS-controlled cocaine (but not palatable food) seeking incubated over 60 days of abstinence and persisted up to 300 days. Understanding the neural mechanisms of this DS-controlled incubation holds promise for drug relapse treatments.

Data availability

All data generated or analyzed during this study, and needed to evaluate the conclusions in the paper, are included in the manuscript and supplementary materials.

Article and author information

Author details

  1. Rajtarun Madangopal

    Neuronal Ensembles in Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Brendan J Tunstall

    Neurobiology of Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Lauren E Komer

    Neuronal Ensembles in Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Sophia J Weber

    Neuronal Ensembles in Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jennifer K Hoots

    Neurobiology of Relapse Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Veronica A Lennon

    Neuronal Ensembles in Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Jennifer M Bossert

    Neurobiology of Relapse Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. David H Epstein

    Real-world Assessment, Prediction, and Treatment Unit, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Yavin Shaham

    Neurobiology of Relapse Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Bruce T Hope

    Neuronal Ensembles in Addiction Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, United States
    For correspondence
    bhope@intra.nida.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5804-7061

Funding

National Institute on Drug Abuse (DA000467-15)

  • Bruce T Hope

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kate M Wassum, University of California Los Angeles, United States

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health (8th edition; http://grants.nih.gov/grants/olaw/Guide-for-the-Care-and-Use-of-Laboratory-Animals.pdf). All rat experiments were approved by the Institutional Animal Care and Use Committee (Protocol# 17-BNRB-203) of the Intramural Research Program of the National Institute on Drug Abuse.

Version history

  1. Received: December 14, 2018
  2. Accepted: February 20, 2019
  3. Accepted Manuscript published: February 25, 2019 (version 1)
  4. Version of Record published: March 14, 2019 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,232
    views
  • 386
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rajtarun Madangopal
  2. Brendan J Tunstall
  3. Lauren E Komer
  4. Sophia J Weber
  5. Jennifer K Hoots
  6. Veronica A Lennon
  7. Jennifer M Bossert
  8. David H Epstein
  9. Yavin Shaham
  10. Bruce T Hope
(2019)
Discriminative stimuli are sufficient for incubation of cocaine craving
eLife 8:e44427.
https://doi.org/10.7554/eLife.44427

Share this article

https://doi.org/10.7554/eLife.44427

Further reading

    1. Neuroscience
    Juan Jose Rodriguez Gotor, Kashif Mahfooz ... John F Wesseling
    Research Article

    Vesicles within presynaptic terminals are thought to be segregated into a variety of readily releasable and reserve pools. The nature of the pools and trafficking between them is not well understood, but pools that are slow to mobilize when synapses are active are often assumed to feed pools that are mobilized more quickly, in a series. However, electrophysiological studies of synaptic transmission have suggested instead a parallel organization where vesicles within slowly and quickly mobilized reserve pools would separately feed independent reluctant- and fast-releasing subdivisions of the readily releasable pool. Here, we use FM-dyes to confirm the existence of multiple reserve pools at hippocampal synapses and a parallel organization that prevents intermixing between the pools, even when stimulation is intense enough to drive exocytosis at the maximum rate. The experiments additionally demonstrate extensive heterogeneity among synapses in the relative sizes of the slowly and quickly mobilized reserve pools, which suggests equivalent heterogeneity in the numbers of reluctant and fast-releasing readily releasable vesicles that may be relevant for understanding information processing and storage.

    1. Evolutionary Biology
    2. Neuroscience
    Daniel Thiel, Luis Alfonso Yañez Guerra ... Gáspár Jékely
    Research Article

    Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) – the most common receptors of bilaterian neuropeptides – but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.