KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D

  1. Sawan Kumar Jha
  2. Khushbu Rauniyar
  3. Ewa Chronowska
  4. Kenny Mattonet
  5. Eunice Wairimu Maina
  6. Hannu Koistinen
  7. Ulf-Håkan Stenman
  8. Kari Alitalo
  9. Michael Jeltsch  Is a corresponding author
  1. University of Helsinki, Finland
  2. Max Planck Institute for Heart and Lung Research, Germany
  3. Wihuri Research Institute, Finland

Abstract

Vascular endothelial growth factor-C (VEGF-C) acts primarily on endothelial cells, but also on non-vascular targets, e.g. in the CNS and immune system. Here we describe a novel, unique VEGF-C form in the human reproductive system produced via cleavage by kallikrein-related peptidase 3 (KLK3), aka prostate-specific antigen (PSA). KLK3 activated VEGF-C specifically and efficiently through cleavage at a novel N-terminal site. We detected VEGF-C in seminal plasma, and sperm liquefaction occurred concurrently with VEGF-C activation, which was enhanced by collagen and calcium binding EGF domains 1 (CCBE1). After plasmin and ADAMTS3, KLK3 is the third protease shown to activate VEGF-C. Since differently activated VEGF-Cs are characterized by successively shorter N-terminal helices, we created an even shorter hypothetical form, which showed preferential binding to VEGFR-3. Using mass spectrometric analysis of the isolated VEGF-C-cleaving activity from human saliva, we identified cathepsin D as a protease that can activate VEGF-C as well as VEGF-D.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sawan Kumar Jha

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1898-4928
  2. Khushbu Rauniyar

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5485-7040
  3. Ewa Chronowska

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Kenny Mattonet

    Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9705-8086
  5. Eunice Wairimu Maina

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Hannu Koistinen

    Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Ulf-Håkan Stenman

    Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Kari Alitalo

    Wihuri Research Institute, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Jeltsch

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    For correspondence
    michael@jeltsch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2890-7790

Funding

Academy of Finland (265982)

  • Michael Jeltsch

European Research Council (Horizon 2020 Research and Innovation programme 743155)

  • Kari Alitalo

Wihuri Research Institute

  • Kari Alitalo

Academy of Finland Centre of Excellence Program 2014-2019 (307366)

  • Kari Alitalo

Novo Nordisk Foundation

  • Kari Alitalo

Cancer Society of Finland

  • Sawan Kumar Jha

Biomedicum Helsinki-säätiö

  • Sawan Kumar Jha

Päivikki and Sakari Sohlberg Foundation

  • Khushbu Rauniyar

Wihuri Research Institute

  • Sawan Kumar Jha

Academy of Finland (272683)

  • Michael Jeltsch

Academy of Finland (273612)

  • Michael Jeltsch

Finnish Foundation for Cardiovascular Research

  • Michael Jeltsch

Academy of Finland (273817)

  • Michael Jeltsch

Jane ja Aatos Erkon Säätiö

  • Michael Jeltsch

Cancer Society of Finland

  • Michael Jeltsch

Magnus Ehrnroothin Säätiö

  • Michael Jeltsch

K Albin Johansson Foundation

  • Michael Jeltsch

Integrated Life Science Doctoral Program

  • Sawan Kumar Jha

Sigrid Jusélius Foundation

  • Hannu Koistinen

Laboratoriolääketieteen edistämissäätiö

  • Hannu Koistinen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments carried out in this study were performed according to guidelines and regulations approved by the National Board for Animal Experiments of the Provincial State Office of Southern Finland (ESAVI/7012/04.10.07/2016).

Copyright

© 2019, Jha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,257
    views
  • 370
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sawan Kumar Jha
  2. Khushbu Rauniyar
  3. Ewa Chronowska
  4. Kenny Mattonet
  5. Eunice Wairimu Maina
  6. Hannu Koistinen
  7. Ulf-Håkan Stenman
  8. Kari Alitalo
  9. Michael Jeltsch
(2019)
KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D
eLife 8:e44478.
https://doi.org/10.7554/eLife.44478

Share this article

https://doi.org/10.7554/eLife.44478

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    Yiwei Huang, Gujie Wu ... Cheng Zhan
    Research Article

    Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.