KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D

  1. Sawan Kumar Jha
  2. Khushbu Rauniyar
  3. Ewa Chronowska
  4. Kenny Mattonet
  5. Eunice Wairimu Maina
  6. Hannu Koistinen
  7. Ulf-Håkan Stenman
  8. Kari Alitalo
  9. Michael Jeltsch  Is a corresponding author
  1. University of Helsinki, Finland
  2. Max Planck Institute for Heart and Lung Research, Germany
  3. Wihuri Research Institute, Finland

Abstract

Vascular endothelial growth factor-C (VEGF-C) acts primarily on endothelial cells, but also on non-vascular targets, e.g. in the CNS and immune system. Here we describe a novel, unique VEGF-C form in the human reproductive system produced via cleavage by kallikrein-related peptidase 3 (KLK3), aka prostate-specific antigen (PSA). KLK3 activated VEGF-C specifically and efficiently through cleavage at a novel N-terminal site. We detected VEGF-C in seminal plasma, and sperm liquefaction occurred concurrently with VEGF-C activation, which was enhanced by collagen and calcium binding EGF domains 1 (CCBE1). After plasmin and ADAMTS3, KLK3 is the third protease shown to activate VEGF-C. Since differently activated VEGF-Cs are characterized by successively shorter N-terminal helices, we created an even shorter hypothetical form, which showed preferential binding to VEGFR-3. Using mass spectrometric analysis of the isolated VEGF-C-cleaving activity from human saliva, we identified cathepsin D as a protease that can activate VEGF-C as well as VEGF-D.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Sawan Kumar Jha

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1898-4928
  2. Khushbu Rauniyar

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5485-7040
  3. Ewa Chronowska

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  4. Kenny Mattonet

    Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9705-8086
  5. Eunice Wairimu Maina

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  6. Hannu Koistinen

    Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  7. Ulf-Håkan Stenman

    Department of Clinical Chemistry, University of Helsinki, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  8. Kari Alitalo

    Wihuri Research Institute, Helsinki, Finland
    Competing interests
    The authors declare that no competing interests exist.
  9. Michael Jeltsch

    Individualized Drug Therapy Research Program, University of Helsinki, Helsinki, Finland
    For correspondence
    michael@jeltsch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2890-7790

Funding

Academy of Finland (265982)

  • Michael Jeltsch

European Research Council (Horizon 2020 Research and Innovation programme 743155)

  • Kari Alitalo

Wihuri Research Institute

  • Kari Alitalo

Academy of Finland Centre of Excellence Program 2014-2019 (307366)

  • Kari Alitalo

Novo Nordisk Foundation

  • Kari Alitalo

Cancer Society of Finland

  • Sawan Kumar Jha

Biomedicum Helsinki-säätiö

  • Sawan Kumar Jha

Päivikki and Sakari Sohlberg Foundation

  • Khushbu Rauniyar

Wihuri Research Institute

  • Sawan Kumar Jha

Academy of Finland (272683)

  • Michael Jeltsch

Academy of Finland (273612)

  • Michael Jeltsch

Finnish Foundation for Cardiovascular Research

  • Michael Jeltsch

Academy of Finland (273817)

  • Michael Jeltsch

Jane ja Aatos Erkon Säätiö

  • Michael Jeltsch

Cancer Society of Finland

  • Michael Jeltsch

Magnus Ehrnroothin Säätiö

  • Michael Jeltsch

K Albin Johansson Foundation

  • Michael Jeltsch

Integrated Life Science Doctoral Program

  • Sawan Kumar Jha

Sigrid Jusélius Foundation

  • Hannu Koistinen

Laboratoriolääketieteen edistämissäätiö

  • Hannu Koistinen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments carried out in this study were performed according to guidelines and regulations approved by the National Board for Animal Experiments of the Provincial State Office of Southern Finland (ESAVI/7012/04.10.07/2016).

Copyright

© 2019, Jha et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,255
    views
  • 370
    downloads
  • 33
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sawan Kumar Jha
  2. Khushbu Rauniyar
  3. Ewa Chronowska
  4. Kenny Mattonet
  5. Eunice Wairimu Maina
  6. Hannu Koistinen
  7. Ulf-Håkan Stenman
  8. Kari Alitalo
  9. Michael Jeltsch
(2019)
KLK3/PSA and cathepsin D activate VEGF-C and VEGF-D
eLife 8:e44478.
https://doi.org/10.7554/eLife.44478

Share this article

https://doi.org/10.7554/eLife.44478

Further reading

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.