Nedd4 E3 ligase and beta-arrestins regulate ubiquitination, trafficking, and stability of the mGlu7 receptor

  1. Sanghyeon Lee
  2. Sunha Park
  3. Hyojin Lee
  4. Seulki Han
  5. Jae-man Song
  6. Dohyun Han
  7. Young Ho Suh  Is a corresponding author
  1. Seoul National University College of Medicine, Korea (South), Republic of
  2. Seoul National University Hospital, Korea (South), Republic of

Abstract

The metabotropic glutamate receptor 7 (mGlu7) is a class C G protein-coupled receptor that modulates excitatory neurotransmitter release at the presynaptic active zone. Although post-translational modification of cellular proteins with ubiquitin is a key molecular mechanism governing protein degradation and function, mGlu7 ubiquitination and its functional consequences have not been elucidated yet. Here, we report that Nedd4 ubiquitin E3 ligase and b-arrestins regulate ubiquitination of mGlu7 in heterologous cells and rat neurons. Upon agonist stimulation, b-arrestins recruit Nedd4 to mGlu7 and facilitate Nedd4-mediated ubiquitination of mGlu7. Nedd4 and b-arrestins regulate constitutive and agonist-induced endocytosis of mGlu7 and are required for mGlu7-dependent MAPK signaling in neurons. In addition, Nedd4-mediated ubiquitination results in the degradation of mGlu7 by both the ubiquitin-proteasome system and the lysosomal degradation pathway. These findings provide a model in which Nedd4 and b-arrestin act together as a complex to regulate mGlu7 surface expression and function at presynaptic terminals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, 5, 6, and 7.

Article and author information

Author details

  1. Sanghyeon Lee

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4456-3505
  2. Sunha Park

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  3. Hyojin Lee

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  4. Seulki Han

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  5. Jae-man Song

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  6. Dohyun Han

    Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  7. Young Ho Suh

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    For correspondence
    suhyho@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3979-1615

Funding

National Research Foundation (NRF-2016R1D1A1B03930951)

  • Sanghyeon Lee
  • Sunha Park
  • Hyojin Lee
  • Seulki Han
  • Jae-man Song
  • Young Ho Suh

National Research Foundation of Korea (NRF-2017M3C7A1029611)

  • Sanghyeon Lee
  • Sunha Park
  • Hyojin Lee
  • Seulki Han
  • Jae-man Song
  • Young Ho Suh

National Research Foundation of Korea (2018R1A2B6004759)

  • Sanghyeon Lee
  • Sunha Park
  • Jae-man Song
  • Young Ho Suh

Korea Health Industry Development Institute (HI18C0789)

  • Sanghyeon Lee
  • Sunha Park
  • Jae-man Song
  • Young Ho Suh

Seoul National University Hospital Research fund (0320150260)

  • Sanghyeon Lee
  • Sunha Park
  • Hyojin Lee
  • Seulki Han
  • Jae-man Song
  • Young Ho Suh

Cooperative research program from Seoul National University College of Medicine (800-20180195)

  • Sanghyeon Lee
  • Sunha Park
  • Jae-man Song
  • Young Ho Suh

Brain Korea 21 PLUS program

  • Sanghyeon Lee
  • Sunha Park
  • Hyojin Lee
  • Seulki Han
  • Jae-man Song
  • Young Ho Suh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Seoul National University. All of the animals were handled according to approved protocol under the guidelines of the Seoul National University Institutional Animal Care and Use Committees (Approval Number: SNU-161222-2-2). The animals were sacrified by CO2 asphyxiation, and every effort was made to minimize suffering.

Copyright

© 2019, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,933
    views
  • 494
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sanghyeon Lee
  2. Sunha Park
  3. Hyojin Lee
  4. Seulki Han
  5. Jae-man Song
  6. Dohyun Han
  7. Young Ho Suh
(2019)
Nedd4 E3 ligase and beta-arrestins regulate ubiquitination, trafficking, and stability of the mGlu7 receptor
eLife 8:e44502.
https://doi.org/10.7554/eLife.44502

Share this article

https://doi.org/10.7554/eLife.44502

Further reading

    1. Neuroscience
    Zhiping Cao, Wing-Ho Yung, Ya Ke
    Research Article

    Mental and behavioral disorders are associated with extended period of hot weather as found in heatwaves, but the underlying neural circuit mechanism remains poorly known. The posterior paraventricular thalamus (pPVT) is a hub for emotional processing and receives inputs from the hypothalamic preoptic area (POA), the well-recognized thermoregulation center. The present study was designed to explore whether chronic heat exposure leads to aberrant activities in POA recipient pPVT neurons and subsequent changes in emotional states. By devising an air heating paradigm mimicking the condition of heatwaves and utilizing emotion-related behavioral tests, viral tract tracing, in vivo calcium recordings, optogenetic manipulations, and electrophysiological recordings, we found that chronic heat exposure for 3 weeks led to negative emotional valence and hyperarousal states in mice. The pPVT neurons receive monosynaptic excitatory and inhibitory innervations from the POA. These neurons exhibited a persistent increase in neural activity following chronic heat exposure, which was essential for chronic heat-induced emotional changes. Notably, these neurons were also prone to display stronger neuronal activities associated with anxiety responses to stressful situations. Furthermore, we observed saturated neuroplasticity in the POA-pPVT excitatory pathway after chronic heat exposure that occluded further potentiation. Taken together, long-term aberration in the POA to pPVT pathway offers a neurobiological mechanism of emotional and behavioral changes seen in extended periods of hot weather like heatwaves.

    1. Neuroscience
    Yisi Liu, Pu Wang ... Hongwei Zhou
    Short Report

    The increasing use of tissue clearing techniques underscores the urgent need for cost-effective and simplified deep imaging methods. While traditional inverted confocal microscopes excel in high-resolution imaging of tissue sections and cultured cells, they face limitations in deep imaging of cleared tissues due to refractive index mismatches between the immersion media of objectives and sample container. To overcome these challenges, the RIM-Deep was developed to significantly improve deep imaging capabilities without compromising the normal function of the confocal microscope. This system facilitates deep immunofluorescence imaging of the prefrontal cortex in cleared macaque tissue, extending imaging depth from 2 mm to 5 mm. Applied to an intact and cleared Thy1-EGFP mouse brain, the system allowed for clear axonal visualization at high imaging depth. Moreover, this advancement enables large-scale, deep 3D imaging of intact tissues. In principle, this concept can be extended to any imaging modality, including existing inverted wide-field, confocal, and two-photon microscopy. This would significantly upgrade traditional laboratory configurations and facilitate the study of connectomes in the brain and other tissues.