1. Neuroscience
Download icon

Nedd4 E3 ligase and beta-arrestins regulate ubiquitination, trafficking, and stability of the mGlu7 receptor

  1. Sanghyeon Lee
  2. Sunha Park
  3. Hyojin Lee
  4. Seulki Han
  5. Jae-man Song
  6. Dohyun Han
  7. Young Ho Suh  Is a corresponding author
  1. Seoul National University College of Medicine, Korea (South), Republic of
  2. Seoul National University Hospital, Korea (South), Republic of
Research Article
  • Cited 14
  • Views 2,055
  • Annotations
Cite this article as: eLife 2019;8:e44502 doi: 10.7554/eLife.44502

Abstract

The metabotropic glutamate receptor 7 (mGlu7) is a class C G protein-coupled receptor that modulates excitatory neurotransmitter release at the presynaptic active zone. Although post-translational modification of cellular proteins with ubiquitin is a key molecular mechanism governing protein degradation and function, mGlu7 ubiquitination and its functional consequences have not been elucidated yet. Here, we report that Nedd4 ubiquitin E3 ligase and b-arrestins regulate ubiquitination of mGlu7 in heterologous cells and rat neurons. Upon agonist stimulation, b-arrestins recruit Nedd4 to mGlu7 and facilitate Nedd4-mediated ubiquitination of mGlu7. Nedd4 and b-arrestins regulate constitutive and agonist-induced endocytosis of mGlu7 and are required for mGlu7-dependent MAPK signaling in neurons. In addition, Nedd4-mediated ubiquitination results in the degradation of mGlu7 by both the ubiquitin-proteasome system and the lysosomal degradation pathway. These findings provide a model in which Nedd4 and b-arrestin act together as a complex to regulate mGlu7 surface expression and function at presynaptic terminals.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1, 2, 3, 5, 6, and 7.

Article and author information

Author details

  1. Sanghyeon Lee

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4456-3505
  2. Sunha Park

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  3. Hyojin Lee

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  4. Seulki Han

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  5. Jae-man Song

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  6. Dohyun Han

    Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  7. Young Ho Suh

    Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea (South), Republic of
    For correspondence
    suhyho@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3979-1615

Funding

National Research Foundation (NRF-2016R1D1A1B03930951)

  • Sanghyeon Lee
  • Sunha Park
  • Hyojin Lee
  • Seulki Han
  • Jae-man Song
  • Young Ho Suh

National Research Foundation of Korea (NRF-2017M3C7A1029611)

  • Sanghyeon Lee
  • Sunha Park
  • Hyojin Lee
  • Seulki Han
  • Jae-man Song
  • Young Ho Suh

National Research Foundation of Korea (2018R1A2B6004759)

  • Sanghyeon Lee
  • Sunha Park
  • Jae-man Song
  • Young Ho Suh

Korea Health Industry Development Institute (HI18C0789)

  • Sanghyeon Lee
  • Sunha Park
  • Jae-man Song
  • Young Ho Suh

Seoul National University Hospital Research fund (0320150260)

  • Sanghyeon Lee
  • Sunha Park
  • Hyojin Lee
  • Seulki Han
  • Jae-man Song
  • Young Ho Suh

Cooperative research program from Seoul National University College of Medicine (800-20180195)

  • Sanghyeon Lee
  • Sunha Park
  • Jae-man Song
  • Young Ho Suh

Brain Korea 21 PLUS program

  • Sanghyeon Lee
  • Sunha Park
  • Hyojin Lee
  • Seulki Han
  • Jae-man Song
  • Young Ho Suh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Seoul National University. All of the animals were handled according to approved protocol under the guidelines of the Seoul National University Institutional Animal Care and Use Committees (Approval Number: SNU-161222-2-2). The animals were sacrified by CO2 asphyxiation, and every effort was made to minimize suffering.

Reviewing Editor

  1. Yukiko Goda, RIKEN, Japan

Publication history

  1. Received: December 18, 2018
  2. Accepted: August 1, 2019
  3. Accepted Manuscript published: August 2, 2019 (version 1)
  4. Version of Record published: August 12, 2019 (version 2)

Copyright

© 2019, Lee et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,055
    Page views
  • 362
    Downloads
  • 14
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Neuroscience
    Rene Solano Fonseca et al.
    Research Article Updated

    Concussion is associated with a myriad of deleterious immediate and long-term consequences. Yet the molecular mechanisms and genetic targets promoting the selective vulnerability of different neural subtypes to dysfunction and degeneration remain unclear. Translating experimental models of blunt force trauma in C. elegans to concussion in mice, we identify a conserved neuroprotective mechanism in which reduction of mitochondrial electron flux through complex IV suppresses trauma-induced degeneration of the highly vulnerable dopaminergic neurons. Reducing cytochrome C oxidase function elevates mitochondrial-derived reactive oxygen species, which signal through the cytosolic hypoxia inducing transcription factor, Hif1a, to promote hyperphosphorylation and inactivation of the pyruvate dehydrogenase, PDHE1α. This critical enzyme initiates the Warburg shunt, which drives energetic reallocation from mitochondrial respiration to astrocyte-mediated glycolysis in a neuroprotective manner. These studies demonstrate a conserved process in which glycolytic preconditioning suppresses Parkinson-like hypersensitivity of dopaminergic neurons to trauma-induced degeneration via redox signaling and the Warburg effect.

    1. Biochemistry and Chemical Biology
    2. Neuroscience
    Lloyd Davis et al.
    Tools and Resources Updated

    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.