State-dependent geometry of population activity in rat auditory cortex

  1. Dmitry Kobak
  2. Jose L Pardo-Vazquez  Is a corresponding author
  3. Mafalda Valente
  4. Christian K Machens
  5. Alfonso Renart  Is a corresponding author
  1. Champalimaud Centre for the Unknown, Portugal

Abstract

The accuracy of the neural code depends on the relative embedding of signal and noise in the activity of neural populations. Despite a wealth of theoretical work on population codes, there are few empirical characterisations of the high-dimensional signal and noise subspaces. We studied the geometry of population codes in the rat auditory cortex across brain states along the activation-inactivation continuum, using sounds varying in difference and mean level across the ears. As the cortex becomes more activated, single-hemisphere populations go from preferring contralateral loud sounds to a symmetric preference across lateralisations and intensities, gain-modulation effectively disappears, and the signal and noise subspaces become approximately orthogonal to each other and to the direction corresponding to global activity modulations. Level-invariant decoding of sound lateralisation also becomes possible in the active state. Our results provide an empirical foundation for the geometry and state-dependence of cortical population codes.

Data availability

The full Matlab code for the analysis is located at https://github.com/dkobak/a1geometry. We made the spike count data (spike counts for each neuron for each stimulus presentation from −50 ms to 150 ms in 50 ms bins) available in the same repository. This allows most of our figures to be reproduced. The complete dataset that was collected, including spike time data not analysed here, is available upon reasonable request to the corresponding author.

Article and author information

Author details

  1. Dmitry Kobak

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5639-7209
  2. Jose L Pardo-Vazquez

    Circuit Dynamics and Computation Laboratory, Champalimaud Centre for the Unknown, Lisboa, Portugal
    For correspondence
    jose.pardovazquez@neuro.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4623-2440
  3. Mafalda Valente

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian K Machens

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1717-1562
  5. Alfonso Renart

    Champalimaud Neuroscience program, Champalimaud Centre for the Unknown, Lisboa, Portugal
    For correspondence
    alfonso.renart@neuro.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7916-9930

Funding

Fundacao Bial (389/14)

  • Dmitry Kobak

EU FP7 grant (ICT-2011-9-600925)

  • Alfonso Renart

German Ministry of Education and Research (FKZ 01GQ1601)

  • Dmitry Kobak

HFSP postdoctoral fellowship (LT 000442/2012)

  • Jose L Pardo-Vazquez

Fundacao para a Ciencia e a Tecnologia

  • Mafalda Valente

Champalimaud Foundation

  • Christian K Machens
  • Alfonso Renart

Simons Collaboration on the Global Brain (543009)

  • Christian K Machens

National Institutes of Health (U01 NS094288)

  • Christian K Machens

Marie Curie Career Integration Grant (PCIG11-GA-2012-322339)

  • Alfonso Renart

HFSP Young Investigator Award (RGY0089)

  • Alfonso Renart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were carried out in accordance with European Union Directive 86/609/EEC and approved by Direçao-Geral de Veterinaria.

Copyright

© 2019, Kobak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,729
    views
  • 384
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry Kobak
  2. Jose L Pardo-Vazquez
  3. Mafalda Valente
  4. Christian K Machens
  5. Alfonso Renart
(2019)
State-dependent geometry of population activity in rat auditory cortex
eLife 8:e44526.
https://doi.org/10.7554/eLife.44526

Share this article

https://doi.org/10.7554/eLife.44526

Further reading

    1. Neuroscience
    Mathias Guayasamin, Lewis R Depaauw-Holt ... Ciaran Murphy-Royal
    Research Article

    Early-life stress can have lifelong consequences, enhancing stress susceptibility and resulting in behavioural and cognitive deficits. While the effects of early-life stress on neuronal function have been well-described, we still know very little about the contribution of non-neuronal brain cells. Investigating the complex interactions between distinct brain cell types is critical to fully understand how cellular changes manifest as behavioural deficits following early-life stress. Here, using male and female mice we report that early-life stress induces anxiety-like behaviour and fear generalisation in an amygdala-dependent learning and memory task. These behavioural changes were associated with impaired synaptic plasticity, increased neural excitability, and astrocyte hypofunction. Genetic perturbation of amygdala astrocyte function by either reducing astrocyte calcium activity or reducing astrocyte network function was sufficient to replicate cellular, synaptic, and fear memory generalisation associated with early-life stress. Our data reveal a role of astrocytes in tuning emotionally salient memory and provide mechanistic links between early-life stress, astrocyte hypofunction, and behavioural deficits.

    1. Neuroscience
    Li Shen, Shuo Li ... Yi Jiang
    Research Article

    When observing others’ behaviors, we continuously integrate their movements with the corresponding sounds to enhance perception and develop adaptive responses. However, how the human brain integrates these complex audiovisual cues based on their natural temporal correspondence remains unclear. Using electroencephalogram (EEG), we demonstrated that rhythmic cortical activity tracked the hierarchical rhythmic structures in audiovisually congruent human walking movements and footstep sounds. Remarkably, the cortical tracking effects exhibit distinct multisensory integration modes at two temporal scales: an additive mode in a lower-order, narrower temporal integration window (step cycle) and a super-additive enhancement in a higher-order, broader temporal window (gait cycle). Furthermore, while neural responses at the lower-order timescale reflect a domain-general audiovisual integration process, cortical tracking at the higher-order timescale is exclusively engaged in the integration of biological motion cues. In addition, only this higher-order, domain-specific cortical tracking effect correlates with individuals’ autistic traits, highlighting its potential as a neural marker for autism spectrum disorder. These findings unveil the multifaceted mechanism whereby rhythmic cortical activity supports the multisensory integration of human motion, shedding light on how neural coding of hierarchical temporal structures orchestrates the processing of complex, natural stimuli across multiple timescales.