State-dependent geometry of population activity in rat auditory cortex

  1. Dmitry Kobak
  2. Jose L Pardo-Vazquez  Is a corresponding author
  3. Mafalda Valente
  4. Christian K Machens
  5. Alfonso Renart  Is a corresponding author
  1. Champalimaud Centre for the Unknown, Portugal

Abstract

The accuracy of the neural code depends on the relative embedding of signal and noise in the activity of neural populations. Despite a wealth of theoretical work on population codes, there are few empirical characterisations of the high-dimensional signal and noise subspaces. We studied the geometry of population codes in the rat auditory cortex across brain states along the activation-inactivation continuum, using sounds varying in difference and mean level across the ears. As the cortex becomes more activated, single-hemisphere populations go from preferring contralateral loud sounds to a symmetric preference across lateralisations and intensities, gain-modulation effectively disappears, and the signal and noise subspaces become approximately orthogonal to each other and to the direction corresponding to global activity modulations. Level-invariant decoding of sound lateralisation also becomes possible in the active state. Our results provide an empirical foundation for the geometry and state-dependence of cortical population codes.

Data availability

The full Matlab code for the analysis is located at https://github.com/dkobak/a1geometry. We made the spike count data (spike counts for each neuron for each stimulus presentation from −50 ms to 150 ms in 50 ms bins) available in the same repository. This allows most of our figures to be reproduced. The complete dataset that was collected, including spike time data not analysed here, is available upon reasonable request to the corresponding author.

Article and author information

Author details

  1. Dmitry Kobak

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5639-7209
  2. Jose L Pardo-Vazquez

    Circuit Dynamics and Computation Laboratory, Champalimaud Centre for the Unknown, Lisboa, Portugal
    For correspondence
    jose.pardovazquez@neuro.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4623-2440
  3. Mafalda Valente

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  4. Christian K Machens

    Champalimaud Neuroscience Program, Champalimaud Centre for the Unknown, Lisbon, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1717-1562
  5. Alfonso Renart

    Champalimaud Neuroscience program, Champalimaud Centre for the Unknown, Lisboa, Portugal
    For correspondence
    alfonso.renart@neuro.fchampalimaud.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7916-9930

Funding

Fundacao Bial (389/14)

  • Dmitry Kobak

EU FP7 grant (ICT-2011-9-600925)

  • Alfonso Renart

German Ministry of Education and Research (FKZ 01GQ1601)

  • Dmitry Kobak

HFSP postdoctoral fellowship (LT 000442/2012)

  • Jose L Pardo-Vazquez

Fundacao para a Ciencia e a Tecnologia

  • Mafalda Valente

Champalimaud Foundation

  • Christian K Machens
  • Alfonso Renart

Simons Collaboration on the Global Brain (543009)

  • Christian K Machens

National Institutes of Health (U01 NS094288)

  • Christian K Machens

Marie Curie Career Integration Grant (PCIG11-GA-2012-322339)

  • Alfonso Renart

HFSP Young Investigator Award (RGY0089)

  • Alfonso Renart

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were carried out in accordance with European Union Directive 86/609/EEC and approved by Direçao-Geral de Veterinaria.

Reviewing Editor

  1. Emilio Salinas, Wake Forest School of Medicine, United States

Publication history

  1. Received: December 19, 2018
  2. Accepted: April 7, 2019
  3. Accepted Manuscript published: April 10, 2019 (version 1)
  4. Version of Record published: April 30, 2019 (version 2)

Copyright

© 2019, Kobak et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,331
    Page views
  • 346
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dmitry Kobak
  2. Jose L Pardo-Vazquez
  3. Mafalda Valente
  4. Christian K Machens
  5. Alfonso Renart
(2019)
State-dependent geometry of population activity in rat auditory cortex
eLife 8:e44526.
https://doi.org/10.7554/eLife.44526

Further reading

    1. Neuroscience
    David S Jacobs, Madeleine C Allen ... Bita Moghaddam
    Research Advance Updated

    Previously, we developed a novel model for anxiety during motivated behavior by training rats to perform a task where actions executed to obtain a reward were probabilistically punished and observed that after learning, neuronal activity in the ventral tegmental area (VTA) and dorsomedial prefrontal cortex (dmPFC) represent the relationship between action and punishment risk (Park and Moghaddam, 2017). Here, we used male and female rats to expand on the previous work by focusing on neural changes in the dmPFC and VTA that were associated with the learning of probabilistic punishment, and anxiolytic treatment with diazepam after learning. We find that adaptive neural responses of dmPFC and VTA during the learning of anxiogenic contingencies are independent from the punisher experience and occur primarily during the peri-action and reward period. Our results also identify peri-action ramping of VTA neural calcium activity, and VTA-dmPFC correlated activity, as potential markers for the anxiolytic properties of diazepam.

    1. Neuroscience
    Haiwei Zhang, Hongchen Li ... Ping Lv
    Research Article Updated

    Repressor element 1-silencing transcription factor (REST) is a transcriptional repressor that recognizes neuron-restrictive silencer elements in the mammalian genomes in a tissue- and cell-specific manner. The identity of REST target genes and molecular details of how REST regulates them are emerging. We performed conditional null deletion of Rest (cKO), mainly restricted to murine hair cells (HCs) and auditory neurons (aka spiral ganglion neurons [SGNs]). Null inactivation of full-length REST did not affect the development of normal HCs and SGNs but manifested as progressive hearing loss in adult mice. We found that the inactivation of REST resulted in an increased abundance of Kv7.4 channels at the transcript, protein, and functional levels. Specifically, we found that SGNs and HCs from Rest cKO mice displayed increased Kv7.4 expression and augmented Kv7 currents; SGN’s excitability was also significantly reduced. Administration of a compound with Kv7.4 channel activator activity, fasudil, recapitulated progressive hearing loss in mice. In contrast, inhibition of the Kv7 channels by XE991 rescued the auditory phenotype of Rest cKO mice. Previous studies identified some loss-of-function mutations within the Kv7.4-coding gene, Kcnq4, as a causative factor for progressive hearing loss in mice and humans. Thus, the findings reveal that a critical homeostatic Kv7.4 channel level is required for proper auditory functions.