Mechanically activated Piezo channels modulate outflow tract valve development through the Yap1 and Klf2-Notch signaling axis

  1. Anne-Laure Duchemin
  2. Hélène Vignes
  3. Julien Vermot  Is a corresponding author
  1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, France

Abstract

Mechanical forces are well known for modulating heart valve developmental programs. Yet, it is still unclear how genetic programs and mechanosensation interact during heart valve development. Here, we assessed the mechanosensitive pathways involved during zebrafish outflow tract (OFT) valve development in vivo. Our results show that the hippo effector Yap1, Klf2, and the Notch signaling pathway are all essential for OFT valve morphogenesis in response to mechanical forces, albeit active in different cell layers. Furthermore, we show that Piezo and TRP mechanosensitive channels are important factors modulating these pathways. In addition, live reporters reveal that Piezo controls Klf2 and Notch activity in the endothelium and Yap1 localization in the smooth muscle progenitors to coordinate OFT valve morphogenesis. Together, this work identifies a unique morphogenetic program during OFT valve formation and places Piezo as a central modulator of the cell response to forces in this process.

Data availability

Source data for the figures has been uploaded.

Article and author information

Author details

  1. Anne-Laure Duchemin

    Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Hélène Vignes

    Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    Competing interests
    The authors declare that no competing interests exist.
  3. Julien Vermot

    Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
    For correspondence
    julien@igbmc.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8924-732X

Funding

H2020 European Research Council (682938 - EVALVE)

  • Julien Vermot

Fondation pour la Recherche Médicale (DEQ29553)

  • Julien Vermot

Agence Nationale de la Recherche (ANR-15-CE13-0015-01)

  • Anne-Laure Duchemin
  • Hélène Vignes
  • Julien Vermot

European Molecular Biology Organization (Young Investigator Program)

  • Julien Vermot

Fondation Lefoulon Delalande

  • Anne-Laure Duchemin

Agence Nationale de la Recherche (ANR-10-IDEX-0002-02)

  • Anne-Laure Duchemin
  • Hélène Vignes
  • Julien Vermot

Agence Nationale de la Recherche (ANR-12-ISV2-0001-01)

  • Anne-Laure Duchemin
  • Hélène Vignes
  • Julien Vermot

Agence Nationale de la Recherche (ANR-10-LABX-0030-INRT)

  • Anne-Laure Duchemin
  • Hélène Vignes
  • Julien Vermot

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were approved by the Animal Experimentation Committee of the Institutional Review Board of the IGBMC.(reference numbers MIN APAFIS#4669-2016032411093030 v4 and MIN4669-2016032411093030 v4-detail of entry 1).

Reviewing Editor

  1. Holger Gerhardt, Max Delbrück Center for Molecular Medicine, Germany

Publication history

  1. Received: December 24, 2018
  2. Accepted: September 14, 2019
  3. Accepted Manuscript published: September 16, 2019 (version 1)
  4. Version of Record published: October 7, 2019 (version 2)

Copyright

© 2019, Duchemin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,585
    Page views
  • 705
    Downloads
  • 45
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anne-Laure Duchemin
  2. Hélène Vignes
  3. Julien Vermot
(2019)
Mechanically activated Piezo channels modulate outflow tract valve development through the Yap1 and Klf2-Notch signaling axis
eLife 8:e44706.
https://doi.org/10.7554/eLife.44706

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Mathi Thiruppathy et al.
    Short Report

    Whereas no known living vertebrate possesses gills derived from the jaw-forming mandibular arch, it has been proposed that the jaw arose through modifications of an ancestral mandibular gill. Here, we show that the zebrafish pseudobranch, which regulates blood pressure in the eye, develops from mandibular arch mesenchyme and first pouch epithelia and shares gene expression, enhancer utilization, and developmental gata3 dependence with the gills. Combined with work in chondrichthyans, our findings in a teleost fish point to the presence of a mandibular pseudobranch with serial homology to gills in the last common ancestor of jawed vertebrates, consistent with a gill origin of vertebrate jaws.

    1. Cell Biology
    2. Developmental Biology
    Katelyn J Hoff et al.
    Research Article Updated

    Heterozygous, missense mutations in α- or β-tubulin genes are associated with a wide range of human brain malformations, known as tubulinopathies. We seek to understand whether a mutation’s impact at the molecular and cellular levels scale with the severity of brain malformation. Here, we focus on two mutations at the valine 409 residue of TUBA1A, V409I, and V409A, identified in patients with pachygyria or lissencephaly, respectively. We find that ectopic expression of TUBA1A-V409I/A mutants disrupt neuronal migration in mice and promote excessive neurite branching and a decrease in the number of neurite retraction events in primary rat neuronal cultures. These neuronal phenotypes are accompanied by increased microtubule acetylation and polymerization rates. To determine the molecular mechanisms, we modeled the V409I/A mutants in budding yeast and found that they promote intrinsically faster microtubule polymerization rates in cells and in reconstitution experiments with purified tubulin. In addition, V409I/A mutants decrease the recruitment of XMAP215/Stu2 to plus ends in budding yeast and ablate tubulin binding to TOG (tumor overexpressed gene) domains. In each assay tested, the TUBA1A-V409I mutant exhibits an intermediate phenotype between wild type and the more severe TUBA1A-V409A, reflecting the severity observed in brain malformations. Together, our data support a model in which the V409I/A mutations disrupt microtubule regulation typically conferred by XMAP215 proteins during neuronal morphogenesis and migration, and this impact on tubulin activity at the molecular level scales with the impact at the cellular and tissue levels.