Brain-specific Drp1 regulates postsynaptic endocytosis and dendrite formation independently of mitochondrial division

Abstract

Dynamin-related protein 1 (Drp1) divides mitochondria as a mechano-chemical GTPase. However, the function of Drp1 beyond mitochondrial division is largely unknown. Multiple Drp1 isoforms are produced through mRNA splicing. One such isoform, Drp1ABCD, contains all four alternative exons and is specifically expressed in the brain. Here, we studied the function of Drp1ABCD in mouse neurons in both culture and animal systems using isoform-specific knockdown by shRNA and isoform-specific knockout by CRISPR/Cas9. We found that the expression of Drp1ABCD is induced during postnatal brain development. Drp1ABCD is enriched in dendritic spines and regulates postsynaptic clathrin-mediated endocytosis by positioning the endocytic zone at the postsynaptic density, independently of mitochondrial division. Drp1ABCD loss promotes the formation of ectopic dendrites in neurons and enhanced sensorimotor gating behavior in mice. These data reveal that Drp1ABCD controls postsynaptic endocytosis, neuronal morphology and brain function.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Kie Itoh

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Daisuke Murata

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Takashi Kato

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Tatsuya Yamada

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Yoichi Araki

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Atsushi Saito

    Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Yoshihiro Adachi

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Atsushi Igarashi

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Shuo Li

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Mikhail Pletnikov

    Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Rick L Huganir

    Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Shigeki Watanabe

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Atsushi Kamiya

    Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Miho Iijima

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    miijima@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
  15. Hiromi Sesaki

    Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    hsesaki@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6877-3929

Funding

National Institute of General Medical Sciences (GM131768)

  • Miho Iijima

National Institute of General Medical Sciences (GM123266)

  • Hiromi Sesaki

National Institute of General Medical Sciences (GM130695)

  • Hiromi Sesaki

National Institute on Drug Abuse (DA041208)

  • Mikhail Pletnikov
  • Atsushi Kamiya

National Institute of Mental Health (MH083728)

  • Mikhail Pletnikov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal work was conducted according to the guidelines established by the Johns Hopkins University Committee on Animal Care and Use. The protocol (MO17M181) has been approved by the same committee.

Reviewing Editor

  1. Margaret S Robinson, University of Cambridge, United Kingdom

Version history

  1. Received: December 27, 2018
  2. Accepted: October 10, 2019
  3. Accepted Manuscript published: October 11, 2019 (version 1)
  4. Accepted Manuscript updated: October 16, 2019 (version 2)
  5. Version of Record published: November 1, 2019 (version 3)

Copyright

© 2019, Itoh et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,024
    Page views
  • 601
    Downloads
  • 20
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kie Itoh
  2. Daisuke Murata
  3. Takashi Kato
  4. Tatsuya Yamada
  5. Yoichi Araki
  6. Atsushi Saito
  7. Yoshihiro Adachi
  8. Atsushi Igarashi
  9. Shuo Li
  10. Mikhail Pletnikov
  11. Rick L Huganir
  12. Shigeki Watanabe
  13. Atsushi Kamiya
  14. Miho Iijima
  15. Hiromi Sesaki
(2019)
Brain-specific Drp1 regulates postsynaptic endocytosis and dendrite formation independently of mitochondrial division
eLife 8:e44739.
https://doi.org/10.7554/eLife.44739

Share this article

https://doi.org/10.7554/eLife.44739

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Guanxiong Yan, Yang Ma ... Wei Miao
    Research Article

    Although most species have two sexes, multisexual (or multi-mating type) species are also widespread. However, it is unclear how mating-type recognition is achieved at the molecular level in multisexual species. The unicellular ciliate Tetrahymena thermophila has seven mating types, which are determined by the MTA and MTB proteins. In this study, we found that both proteins are essential for cells to send or receive complete mating-type information, and transmission of the mating-type signal requires both proteins to be expressed in the same cell. We found that MTA and MTB form a mating-type recognition complex that localizes to the plasma membrane, but not to the cilia. Stimulation experiments showed that the mating-type-specific regions of MTA and MTB mediate both self- and non-self-recognition, indicating that T. thermophila uses a dual approach to achieve mating-type recognition. Our results suggest that MTA and MTB form an elaborate multifunctional protein complex that can identify cells of both self and non-self mating types in order to inhibit or activate mating, respectively.

    1. Cell Biology
    2. Neuroscience
    Anna Kádková, Jacqueline Murach ... Jakob Balslev Sørensen
    Research Article

    SNAP25 is one of three neuronal SNAREs driving synaptic vesicle exocytosis. We studied three mutations in SNAP25 that cause epileptic encephalopathy: V48F, and D166Y in the synaptotagmin-1 (Syt1)-binding interface, and I67N, which destabilizes the SNARE complex. All three mutations reduced Syt1-dependent vesicle docking to SNARE-carrying liposomes and Ca2+-stimulated membrane fusion in vitro and when expressed in mouse hippocampal neurons. The V48F and D166Y mutants (with potency D166Y > V48F) led to reduced readily releasable pool (RRP) size, due to increased spontaneous (miniature Excitatory Postsynaptic Current, mEPSC) release and decreased priming rates. These mutations lowered the energy barrier for fusion and increased the release probability, which are gain-of-function features not found in Syt1 knockout (KO) neurons; normalized mEPSC release rates were higher (potency D166Y > V48F) than in the Syt1 KO. These mutations (potency D166Y > V48F) increased spontaneous association to partner SNAREs, resulting in unregulated membrane fusion. In contrast, the I67N mutant decreased mEPSC frequency and evoked EPSC amplitudes due to an increase in the height of the energy barrier for fusion, whereas the RRP size was unaffected. This could be partly compensated by positive charges lowering the energy barrier. Overall, pathogenic mutations in SNAP25 cause complex changes in the energy landscape for priming and fusion.