Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein

  1. Rama Reddy Goluguri
  2. Sreemantee Sen
  3. Jayant Udgaonkar  Is a corresponding author
  1. Tata Institute of Fundamental Research, India

Abstract

Protein aggregation appear to originate from partially unfolded conformations that are sampled through stochastic fluctuations of the native protein. It has been a challenge to characterize these fluctuations, under native like conditions. Here, the conformational dynamics of the full-length (23-231) mouse prion protein were studied under native conditions, using photoinduced electron transfer coupled to fluorescence correlation spectroscopy (PET-FCS). The slowest fluctuations could be associated with the folding of the unfolded state to an intermediate state, by the use of microsecond mixing experiments. The two faster fluctuations observed by PET-FCS, could be attributed to fluctuations within the native state ensemble. The addition of salt, which is known to initiate the aggregation of the protein, resulted in an enhancement in the time scale of fluctuations in the core of the protein. The results indicate the importance of native state dynamics in initiating the aggregation of proteins.

Data availability

All data generated during the study are included in the manuscript and supporting files. Source data for Figures 2,3, 5, 6 and corresponding figure supplements have been uploaded as Excel file.

Article and author information

Author details

  1. Rama Reddy Goluguri

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1134-9841
  2. Sreemantee Sen

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
    Competing interests
    The authors declare that no competing interests exist.
  3. Jayant Udgaonkar

    National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bengaluru, India
    For correspondence
    jayant@iiserpune.ac.in
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7005-224X

Funding

Tata Institute of Fundamental Research

  • Rama Reddy Goluguri
  • Sreemantee Sen
  • Jayant Udgaonkar

Department of Science and Technology, Ministry of Science and Technology

  • Jayant Udgaonkar

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Goluguri et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,025
    views
  • 301
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rama Reddy Goluguri
  2. Sreemantee Sen
  3. Jayant Udgaonkar
(2019)
Microsecond sub-domain motions and the folding and misfolding of the mouse prion protein
eLife 8:e44766.
https://doi.org/10.7554/eLife.44766

Share this article

https://doi.org/10.7554/eLife.44766

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Joar Esteban Pinto Torres, Mathieu Claes ... Yann G-J Sterckx
    Research Article

    African trypanosomes are the causative agents of neglected tropical diseases affecting both humans and livestock. Disease control is highly challenging due to an increasing number of drug treatment failures. African trypanosomes are extracellular, blood-borne parasites that mainly rely on glycolysis for their energy metabolism within the mammalian host. Trypanosomal glycolytic enzymes are therefore of interest for the development of trypanocidal drugs. Here, we report the serendipitous discovery of a camelid single-domain antibody (sdAb aka Nanobody) that selectively inhibits the enzymatic activity of trypanosomatid (but not host) pyruvate kinases through an allosteric mechanism. By combining enzyme kinetics, biophysics, structural biology, and transgenic parasite survival assays, we provide a proof-of-principle that the sdAb-mediated enzyme inhibition negatively impacts parasite fitness and growth.

    1. Structural Biology and Molecular Biophysics
    Manming Xu, Sarath Chandra Dantu ... Shozeb Haider
    Research Article

    The relationship between protein dynamics and function is essential for understanding biological processes and developing effective therapeutics. Functional sites within proteins are critical for activities such as substrate binding, catalysis, and structural changes. Existing computational methods for the predictions of functional residues are trained on sequence, structural, and experimental data, but they do not explicitly model the influence of evolution on protein dynamics. This overlooked contribution is essential as it is known that evolution can fine-tune protein dynamics through compensatory mutations either to improve the proteins’ performance or diversify its function while maintaining the same structural scaffold. To model this critical contribution, we introduce DyNoPy, a computational method that combines residue coevolution analysis with molecular dynamics simulations, revealing hidden correlations between functional sites. DyNoPy constructs a graph model of residue–residue interactions, identifies communities of key residue groups, and annotates critical sites based on their roles. By leveraging the concept of coevolved dynamical couplings—residue pairs with critical dynamical interactions that have been preserved during evolution—DyNoPy offers a powerful method for predicting and analysing protein evolution and dynamics. We demonstrate the effectiveness of DyNoPy on SHV-1 and PDC-3, chromosomally encoded β-lactamases linked to antibiotic resistance, highlighting its potential to inform drug design and address pressing healthcare challenges.