Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement
Abstract
Interplay between dopaminergic and cholinergic neuromodulation in the striatum is crucial for movement control, with prominent models proposing pro-kinetic and anti-kinetic effects of dopamine and acetylcholine release, respectively. However, the natural, movement-related signals of striatum cholinergic neurons and their relationship to simultaneous variations in dopamine signaling are unknown. Here, functional optical recordings in mice were used to establish rapid cholinergic signals in dorsal striatum during spontaneous movements. Bursts across the cholinergic population occurred at transitions between movement states and were marked by widespread network synchronization which diminished during sustained locomotion. Simultaneous cholinergic and dopaminergic recordings revealed distinct but coordinated sub-second signals, suggesting a new model where cholinergic population synchrony signals rapid changes in movement states while dopamine signals the drive to enact or sustain those states.
Data availability
Data generated or analysed during this study are included in the manuscript and supporting files. Processed data from large data files (time-series movies) that support the findings of this study are available at Dryad Dataverse (doi:10.5061/dryad.244nt37).
-
Data from: Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movementDryad Digital Repository, doi:10.5061/dryad.j1fd7.
Article and author information
Author details
Funding
National Institutes of Health (R01MH110556)
- Daniel Dombeck
McKnight Foundation
- Daniel Dombeck
National Institutes of Health (T32 AG20506)
- Mark Howe
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: All experiments were approved by the Northwestern University Animal Care and Use Committee (Protocol #IS00005043 and IS00003736).
Copyright
© 2019, Howe et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.