Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement

Abstract

Interplay between dopaminergic and cholinergic neuromodulation in the striatum is crucial for movement control, with prominent models proposing pro-kinetic and anti-kinetic effects of dopamine and acetylcholine release, respectively. However, the natural, movement-related signals of striatum cholinergic neurons and their relationship to simultaneous variations in dopamine signaling are unknown. Here, functional optical recordings in mice were used to establish rapid cholinergic signals in dorsal striatum during spontaneous movements. Bursts across the cholinergic population occurred at transitions between movement states and were marked by widespread network synchronization which diminished during sustained locomotion. Simultaneous cholinergic and dopaminergic recordings revealed distinct but coordinated sub-second signals, suggesting a new model where cholinergic population synchrony signals rapid changes in movement states while dopamine signals the drive to enact or sustain those states.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files. Processed data from large data files (time-series movies) that support the findings of this study are available at Dryad Dataverse (doi:10.5061/dryad.244nt37).

The following data sets were generated

Article and author information

Author details

  1. Mark Howe

    Department of Neurobiology, Northwestern University, Evanston, United States
    For correspondence
    mwhowe@bu.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Imane Ridouh

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anna Letizia Allegra Mascaro

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8489-0076
  4. Alyssa Larios

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maite Azcorra Sedano

    Department of Neurobiology, Northwestern University, Evanston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Daniel Dombeck

    Department of Neurobiology, Northwestern University, Evanston, United States
    For correspondence
    d-dombeck@northwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2576-5918

Funding

National Institutes of Health (R01MH110556)

  • Daniel Dombeck

McKnight Foundation

  • Daniel Dombeck

National Institutes of Health (T32 AG20506)

  • Mark Howe

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Naoshige Uchida, Harvard University, United States

Ethics

Animal experimentation: All experiments were approved by the Northwestern University Animal Care and Use Committee (Protocol #IS00005043 and IS00003736).

Version history

  1. Received: January 5, 2019
  2. Accepted: March 26, 2019
  3. Accepted Manuscript published: March 28, 2019 (version 1)
  4. Version of Record published: April 10, 2019 (version 2)

Copyright

© 2019, Howe et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,513
    views
  • 1,100
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mark Howe
  2. Imane Ridouh
  3. Anna Letizia Allegra Mascaro
  4. Alyssa Larios
  5. Maite Azcorra Sedano
  6. Daniel Dombeck
(2019)
Coordination of rapid cholinergic and dopaminergic signaling in striatum during spontaneous movement
eLife 8:e44903.
https://doi.org/10.7554/eLife.44903

Share this article

https://doi.org/10.7554/eLife.44903

Further reading

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.

    1. Neuroscience
    Avani Koparkar, Timothy L Warren ... Lena Veit
    Research Article

    Complex skills like speech and dance are composed of ordered sequences of simpler elements, but the neuronal basis for the syntactic ordering of actions is poorly understood. Birdsong is a learned vocal behavior composed of syntactically ordered syllables, controlled in part by the songbird premotor nucleus HVC (proper name). Here, we test whether one of HVC’s recurrent inputs, mMAN (medial magnocellular nucleus of the anterior nidopallium), contributes to sequencing in adult male Bengalese finches (Lonchura striata domestica). Bengalese finch song includes several patterns: (1) chunks, comprising stereotyped syllable sequences; (2) branch points, where a given syllable can be followed probabilistically by multiple syllables; and (3) repeat phrases, where individual syllables are repeated variable numbers of times. We found that following bilateral lesions of mMAN, acoustic structure of syllables remained largely intact, but sequencing became more variable, as evidenced by ‘breaks’ in previously stereotyped chunks, increased uncertainty at branch points, and increased variability in repeat numbers. Our results show that mMAN contributes to the variable sequencing of vocal elements in Bengalese finch song and demonstrate the influence of recurrent projections to HVC. Furthermore, they highlight the utility of species with complex syntax in investigating neuronal control of ordered sequences.