1. Neuroscience
Download icon

Synapse-specific Opioid Modulation of Thalamo-cortico-striatal Circuits

  1. William T Birdsong  Is a corresponding author
  2. Bart C Jongbloets
  3. Kim A Engeln
  4. Dong Wang
  5. Gregory Scherrer
  6. Tianyi Mao  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Stanford University, United States
Research Article
  • Cited 12
  • Views 2,374
  • Annotations
Cite this article as: eLife 2019;8:e45146 doi: 10.7554/eLife.45146
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

The medial thalamus (MThal), anterior cingulate cortex (ACC) and striatum play important roles in affective-motivational pain processing and reward learning. Opioids affect both pain and reward through uncharacterized modulation of this circuitry. This study examined opioid actions on glutamate transmission between these brain regions in mouse. Mu-opioid receptor (MOR) agonists potently inhibited MThal inputs without affecting ACC inputs to individual striatal medium spiny neurons (MSNs). MOR activation also inhibited MThal inputs to the pyramidal neurons in the ACC. In contrast, delta-opioid receptor (DOR) agonists disinhibited ACC pyramidal neuron responses to MThal inputs by suppressing local feed-forward GABA signaling from parvalbumin-positive interneurons. As a result, DOR activation in the ACC facilitated poly-synaptic (thalamo-cortico-striatal) excitation of MSNs by MThal inputs. These results suggest that opioid effects on pain and reward may be shaped by the relative selectivity of opioid drugs to the specific circuit components.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. All code and data are deposited in https://gitlab.com/maolab/opi_syn_circuit. ecfa1f13.

Article and author information

Author details

  1. William T Birdsong

    Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    wtbird@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Bart C Jongbloets

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kim A Engeln

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dong Wang

    Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gregory Scherrer

    Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tianyi Mao

    Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    mao@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3532-8319

Funding

National Institute of Neurological Disorders and Stroke (R01NS081071)

  • Tianyi Mao

New York Stem Cell Foundation

  • Gregory Scherrer

National Institute on Drug Abuse (R01DA042779)

  • William T Birdsong

National Institute on Drug Abuse (R01DA044481)

  • Gregory Scherrer

National Institute on Drug Abuse (R01NS106301)

  • Gregory Scherrer

National Institute of Neurological Disorders and Stroke (R01NS104944)

  • Tianyi Mao

National Institute of Neurological Disorders and Stroke (U01NS094247)

  • Tianyi Mao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures were approved by Oregon Health & Science University Institutional Animal Care and Use Committee (IACUC) and all experiments were performed strictly according the approved protocols. IACUC protocol IP00000955, and Institutional Biosafety Committee protocol IBC-10-40.

Reviewing Editor

  1. Olivier J Manzoni, Aix-Marseille University, INSERM, INMED, France

Publication history

  1. Received: January 14, 2019
  2. Accepted: May 15, 2019
  3. Accepted Manuscript published: May 17, 2019 (version 1)
  4. Version of Record published: May 29, 2019 (version 2)

Copyright

© 2019, Birdsong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,374
    Page views
  • 484
    Downloads
  • 12
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Scopus, Crossref.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Neuroscience
    2. Structural Biology and Molecular Biophysics
    Monica L Fernández-Quintero et al.
    Research Article Updated

    Voltage-gated calcium channels control key functions of excitable cells, like synaptic transmission in neurons and the contraction of heart and skeletal muscles. To accomplish such diverse functions, different calcium channels activate at different voltages and with distinct kinetics. To identify the molecular mechanisms governing specific voltage sensing properties, we combined structure modeling, mutagenesis, and electrophysiology to analyze the structures, free energy, and transition kinetics of the activated and resting states of two functionally distinct voltage sensing domains (VSDs) of the eukaryotic calcium channel CaV1.1. Both VSDs displayed the typical features of the sliding helix model; however, they greatly differed in ion-pair formation of the outer gating charges. Specifically, stabilization of the activated state enhanced the voltage dependence of activation, while stabilization of resting states slowed the kinetics. This mechanism provides a mechanistic model explaining how specific ion-pair formation in separate VSDs can realize the characteristic gating properties of voltage-gated cation channels.

    1. Neuroscience
    Elizabeth B Brown et al.
    Research Article

    Chemosensory systems are critical for evaluating the caloric value and potential toxicity of food prior to ingestion. While animals can discriminate between 1000's of odors, much less is known about the discriminative capabilities of taste systems. Fats and sugars represent calorically potent and innately attractive food sources that contribute to hedonic feeding. Despite the differences in nutritional value between fats and sugars, the ability of the taste system to discriminate between different rewarding tastants is thought to be limited. In Drosophila, sweet taste neurons expressing the Ionotropic Receptor 56d (IR56d) are required for reflexive behavioral responses to the medium-chain fatty acid, hexanoic acid. Further, we have found that flies can discriminate between a fatty acid and a sugar in aversive memory assays, establishing a foundation to investigate the capacity of the Drosophila gustatory system to differentiate between various appetitive tastants. Here, we tested whether flies can discriminate between different classes of fatty acids using an aversive memory assay. Our results indicate that flies are able to discriminate medium-chain fatty acids from both short- and long-chain fatty acids, but not from other medium-chain fatty acids. While IR56d neurons are broadly responsive to short-, medium-, and long-chain fatty acids, genetic deletion of IR56d selectively disrupts response to medium-chain fatty acids. Further, IR56d+GR64f+ neurons are necessary for proboscis extension response (PER) to medium-chain fatty acids, but both IR56d and GR64f neurons are dispensable for PER to short- and long-chain fatty acids, indicating the involvement of one or more other classes of neurons. Together, these findings reveal that IR56d is selectively required for medium-chain fatty acid taste, and discrimination of fatty acids occurs through differential receptor activation in shared populations of neurons. Our study uncovers a capacity for the taste system to encode tastant identity within a taste category.