Synapse-specific Opioid Modulation of Thalamo-cortico-striatal Circuits

  1. William T Birdsong  Is a corresponding author
  2. Bart C Jongbloets
  3. Kim A Engeln
  4. Dong Wang
  5. Gregory Scherrer
  6. Tianyi Mao  Is a corresponding author
  1. Oregon Health and Science University, United States
  2. Stanford University, United States

Abstract

The medial thalamus (MThal), anterior cingulate cortex (ACC) and striatum play important roles in affective-motivational pain processing and reward learning. Opioids affect both pain and reward through uncharacterized modulation of this circuitry. This study examined opioid actions on glutamate transmission between these brain regions in mouse. Mu-opioid receptor (MOR) agonists potently inhibited MThal inputs without affecting ACC inputs to individual striatal medium spiny neurons (MSNs). MOR activation also inhibited MThal inputs to the pyramidal neurons in the ACC. In contrast, delta-opioid receptor (DOR) agonists disinhibited ACC pyramidal neuron responses to MThal inputs by suppressing local feed-forward GABA signaling from parvalbumin-positive interneurons. As a result, DOR activation in the ACC facilitated poly-synaptic (thalamo-cortico-striatal) excitation of MSNs by MThal inputs. These results suggest that opioid effects on pain and reward may be shaped by the relative selectivity of opioid drugs to the specific circuit components.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. All code and data are deposited in https://gitlab.com/maolab/opi_syn_circuit. ecfa1f13.

Article and author information

Author details

  1. William T Birdsong

    Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    wtbird@med.umich.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Bart C Jongbloets

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kim A Engeln

    Vollum Institute, Oregon Health and Science University, Portland, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Dong Wang

    Department of Anesthesiology, Perioperative and Pain Medicine, Department of Molecular and Cellular Physiology, Department of Neurosurgery, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gregory Scherrer

    Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Tianyi Mao

    Vollum Institute, Oregon Health and Science University, Portland, United States
    For correspondence
    mao@ohsu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3532-8319

Funding

National Institute of Neurological Disorders and Stroke (R01NS081071)

  • Tianyi Mao

New York Stem Cell Foundation

  • Gregory Scherrer

National Institute on Drug Abuse (R01DA042779)

  • William T Birdsong

National Institute on Drug Abuse (R01DA044481)

  • Gregory Scherrer

National Institute on Drug Abuse (R01NS106301)

  • Gregory Scherrer

National Institute of Neurological Disorders and Stroke (R01NS104944)

  • Tianyi Mao

National Institute of Neurological Disorders and Stroke (U01NS094247)

  • Tianyi Mao

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Olivier J Manzoni, Aix-Marseille University, INSERM, INMED, France

Ethics

Animal experimentation: All procedures were approved by Oregon Health & Science University Institutional Animal Care and Use Committee (IACUC) and all experiments were performed strictly according the approved protocols. IACUC protocol IP00000955, and Institutional Biosafety Committee protocol IBC-10-40.

Version history

  1. Received: January 14, 2019
  2. Accepted: May 15, 2019
  3. Accepted Manuscript published: May 17, 2019 (version 1)
  4. Version of Record published: May 29, 2019 (version 2)

Copyright

© 2019, Birdsong et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,833
    views
  • 678
    downloads
  • 46
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. William T Birdsong
  2. Bart C Jongbloets
  3. Kim A Engeln
  4. Dong Wang
  5. Gregory Scherrer
  6. Tianyi Mao
(2019)
Synapse-specific Opioid Modulation of Thalamo-cortico-striatal Circuits
eLife 8:e45146.
https://doi.org/10.7554/eLife.45146

Share this article

https://doi.org/10.7554/eLife.45146

Further reading

    1. Neuroscience
    Vezha Boboeva, Alberto Pezzotta ... Athena Akrami
    Research Article

    The central tendency bias, or contraction bias, is a phenomenon where the judgment of the magnitude of items held in working memory appears to be biased toward the average of past observations. It is assumed to be an optimal strategy by the brain and commonly thought of as an expression of the brain’s ability to learn the statistical structure of sensory input. On the other hand, recency biases such as serial dependence are also commonly observed and are thought to reflect the content of working memory. Recent results from an auditory delayed comparison task in rats suggest that both biases may be more related than previously thought: when the posterior parietal cortex (PPC) was silenced, both short-term and contraction biases were reduced. By proposing a model of the circuit that may be involved in generating the behavior, we show that a volatile working memory content susceptible to shifting to the past sensory experience – producing short-term sensory history biases – naturally leads to contraction bias. The errors, occurring at the level of individual trials, are sampled from the full distribution of the stimuli and are not due to a gradual shift of the memory toward the sensory distribution’s mean. Our results are consistent with a broad set of behavioral findings and provide predictions of performance across different stimulus distributions and timings, delay intervals, as well as neuronal dynamics in putative working memory areas. Finally, we validate our model by performing a set of human psychophysics experiments of an auditory parametric working memory task.

    1. Neuroscience
    Michael Berger, Michèle Fraatz ... Henrike Scholz
    Research Article

    The brain regulates food intake in response to internal energy demands and food availability. However, can internal energy storage influence the type of memory that is formed? We show that the duration of starvation determines whether Drosophila melanogaster forms appetitive short-term or longer-lasting intermediate memories. The internal glycogen storage in the muscles and adipose tissue influences how intensely sucrose-associated information is stored. Insulin-like signaling in octopaminergic reward neurons integrates internal energy storage into memory formation. Octopamine, in turn, suppresses the formation of long-term memory. Octopamine is not required for short-term memory because octopamine-deficient mutants can form appetitive short-term memory for sucrose and to other nutrients depending on the internal energy status. The reduced positive reinforcing effect of sucrose at high internal glycogen levels, combined with the increased stability of food-related memories due to prolonged periods of starvation, could lead to increased food intake.