Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice

  1. Hongsheng Zhang
  2. Anupama Sathyamurthy
  3. Fang Liu
  4. Lei Li
  5. Lei Zhang
  6. Zhaoqi Dong
  7. Wanpeng Cui
  8. Xiangdong Sun
  9. Kai Zhao
  10. Hongsheng Wang
  11. Hsin-Yi Henry Ho
  12. Wen-Cheng Xiong
  13. Lin Mei  Is a corresponding author
  1. Case Western Reserve University, United States
  2. Augusta University, United States
  3. Harvard Medical School, United States

Abstract

Adult neurogenesis in the hippocampus may represent a form of plasticity in brain functions including mood, learning and memory. However, mechanisms underlying neural stem/progenitor cells (NSPCs) proliferation are not well understood. We found that Agrin, a factor critical for neuromuscular junction formation, is elevated in the hippocampus of mice that are stimulated by enriched environment (EE). Genetic deletion of the Agrn gene in excitatory neurons decreases NSPCs proliferation and increases depressing-like behavior. Low-density lipoprotein receptor-related protein 4 (Lrp4), a receptor for Agrin, is expressed in hippocampal NSPCs and its mutation blocked basal as well as EE-induced NSPCs proliferation and maturation of newborn neurons. Finally, we show that Lrp4 interacts with and activates receptor tyrosine kinase-like orphan receptor 2 (Ror2); and Ror2 mutation impairs NSPCs proliferation. Together, these observations identify a role of Agrin-Lrp4-Ror2 signaling for adult neurogenesis, uncovering previously unexpected functions of Agrin and Lrp4 in the brain.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hongsheng Zhang

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8138-2108
  2. Anupama Sathyamurthy

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fang Liu

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lei Li

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lei Zhang

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhaoqi Dong

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wanpeng Cui

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiangdong Sun

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kai Zhao

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Hongsheng Wang

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hsin-Yi Henry Ho

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8780-7864
  12. Wen-Cheng Xiong

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9071-7598
  13. Lin Mei

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    For correspondence
    lin.mei@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5772-1229

Funding

National Institutes of Health (MH083317)

  • Lin Mei

National Institutes of Health (MH109280)

  • Lin Mei

National Institutes of Health (NS082007)

  • Lin Mei

National Institutes of Health (NS090083)

  • Lin Mei

National Institutes of Health (AG051510)

  • Lin Mei

National Institutes of Health (AG051773)

  • Wen-Cheng Xiong

National Institutes of Health (AG045781)

  • Wen-Cheng Xiong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were in accordance with the National Institutes of Health Guide for the care and use of Laboratory Animals and approved by Institutional Animal Care and Use Committees of Augusta University (Protocol #: 2011-0393) and Case Western Reserve University (Protocol #: 2017-0115).

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,620
    views
  • 502
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hongsheng Zhang
  2. Anupama Sathyamurthy
  3. Fang Liu
  4. Lei Li
  5. Lei Zhang
  6. Zhaoqi Dong
  7. Wanpeng Cui
  8. Xiangdong Sun
  9. Kai Zhao
  10. Hongsheng Wang
  11. Hsin-Yi Henry Ho
  12. Wen-Cheng Xiong
  13. Lin Mei
(2019)
Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice
eLife 8:e45303.
https://doi.org/10.7554/eLife.45303

Share this article

https://doi.org/10.7554/eLife.45303

Further reading

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.

    1. Neuroscience
    Sam E Benezra, Kripa B Patel ... Randy M Bruno
    Research Article

    Learning alters cortical representations and improves perception. Apical tuft dendrites in cortical layer 1, which are unique in their connectivity and biophysical properties, may be a key site of learning-induced plasticity. We used both two-photon and SCAPE microscopy to longitudinally track tuft-wide calcium spikes in apical dendrites of layer 5 pyramidal neurons in barrel cortex as mice learned a tactile behavior. Mice were trained to discriminate two orthogonal directions of whisker stimulation. Reinforcement learning, but not repeated stimulus exposure, enhanced tuft selectivity for both directions equally, even though only one was associated with reward. Selective tufts emerged from initially unresponsive or low-selectivity populations. Animal movement and choice did not account for changes in stimulus selectivity. Enhanced selectivity persisted even after rewards were removed and animals ceased performing the task. We conclude that learning produces long-lasting realignment of apical dendrite tuft responses to behaviorally relevant dimensions of a task.