Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice

  1. Hongsheng Zhang
  2. Anupama Sathyamurthy
  3. Fang Liu
  4. Lei Li
  5. Lei Zhang
  6. Zhaoqi Dong
  7. Wanpeng Cui
  8. Xiangdong Sun
  9. Kai Zhao
  10. Hongsheng Wang
  11. Hsin-Yi Henry Ho
  12. Wen-Cheng Xiong
  13. Lin Mei  Is a corresponding author
  1. Case Western Reserve University, United States
  2. Augusta University, United States
  3. Harvard Medical School, United States

Abstract

Adult neurogenesis in the hippocampus may represent a form of plasticity in brain functions including mood, learning and memory. However, mechanisms underlying neural stem/progenitor cells (NSPCs) proliferation are not well understood. We found that Agrin, a factor critical for neuromuscular junction formation, is elevated in the hippocampus of mice that are stimulated by enriched environment (EE). Genetic deletion of the Agrn gene in excitatory neurons decreases NSPCs proliferation and increases depressing-like behavior. Low-density lipoprotein receptor-related protein 4 (Lrp4), a receptor for Agrin, is expressed in hippocampal NSPCs and its mutation blocked basal as well as EE-induced NSPCs proliferation and maturation of newborn neurons. Finally, we show that Lrp4 interacts with and activates receptor tyrosine kinase-like orphan receptor 2 (Ror2); and Ror2 mutation impairs NSPCs proliferation. Together, these observations identify a role of Agrin-Lrp4-Ror2 signaling for adult neurogenesis, uncovering previously unexpected functions of Agrin and Lrp4 in the brain.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hongsheng Zhang

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8138-2108
  2. Anupama Sathyamurthy

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fang Liu

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lei Li

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lei Zhang

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhaoqi Dong

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wanpeng Cui

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiangdong Sun

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kai Zhao

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Hongsheng Wang

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hsin-Yi Henry Ho

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8780-7864
  12. Wen-Cheng Xiong

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9071-7598
  13. Lin Mei

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    For correspondence
    lin.mei@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5772-1229

Funding

National Institutes of Health (MH083317)

  • Lin Mei

National Institutes of Health (MH109280)

  • Lin Mei

National Institutes of Health (NS082007)

  • Lin Mei

National Institutes of Health (NS090083)

  • Lin Mei

National Institutes of Health (AG051510)

  • Lin Mei

National Institutes of Health (AG051773)

  • Wen-Cheng Xiong

National Institutes of Health (AG045781)

  • Wen-Cheng Xiong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were in accordance with the National Institutes of Health Guide for the care and use of Laboratory Animals and approved by Institutional Animal Care and Use Committees of Augusta University (Protocol #: 2011-0393) and Case Western Reserve University (Protocol #: 2017-0115).

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,565
    views
  • 501
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hongsheng Zhang
  2. Anupama Sathyamurthy
  3. Fang Liu
  4. Lei Li
  5. Lei Zhang
  6. Zhaoqi Dong
  7. Wanpeng Cui
  8. Xiangdong Sun
  9. Kai Zhao
  10. Hongsheng Wang
  11. Hsin-Yi Henry Ho
  12. Wen-Cheng Xiong
  13. Lin Mei
(2019)
Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice
eLife 8:e45303.
https://doi.org/10.7554/eLife.45303

Share this article

https://doi.org/10.7554/eLife.45303

Further reading

    1. Neuroscience
    Charles R Heller, Gregory R Hamersky, Stephen V David
    Research Article

    Categorical sensory representations are critical for many behaviors, including speech perception. In the auditory system, categorical information is thought to arise hierarchically, becoming increasingly prominent in higher-order cortical regions. The neural mechanisms that support this robust and flexible computation remain poorly understood. Here, we studied sound representations in the ferret primary and non-primary auditory cortex while animals engaged in a challenging sound discrimination task. Population-level decoding of simultaneously recorded single neurons revealed that task engagement caused categorical sound representations to emerge in non-primary auditory cortex. In primary auditory cortex, task engagement caused a general enhancement of sound decoding that was not specific to task-relevant categories. These findings are consistent with mixed selectivity models of neural disentanglement, in which early sensory regions build an overcomplete representation of the world and allow neurons in downstream brain regions to flexibly and selectively read out behaviorally relevant, categorical information.

    1. Neuroscience
    2. Stem Cells and Regenerative Medicine
    Amber R Philp, Carolina R Reyes ... Francisco J Rivera
    Short Report

    Revealing unknown cues that regulate oligodendrocyte progenitor cell (OPC) function in remyelination is important to optimise the development of regenerative therapies for multiple sclerosis (MS). Platelets are present in chronic non-remyelinated lesions of MS and an increase in circulating platelets has been described in experimental autoimmune encephalomyelitis (EAE) mice, an animal model for MS. However, the contribution of platelets to remyelination remains unexplored. Here we show platelet aggregation in proximity to OPCs in areas of experimental demyelination. Partial depletion of circulating platelets impaired OPC differentiation and remyelination, without altering blood-brain barrier stability and neuroinflammation. Transient exposure to platelets enhanced OPC differentiation in vitro, whereas sustained exposure suppressed this effect. In a mouse model of thrombocytosis (Calr+/-), there was a sustained increase in platelet aggregation together with a reduction of newly-generated oligodendrocytes following toxin-induced demyelination. These findings reveal a complex bimodal contribution of platelet to remyelination and provide insights into remyelination failure in MS.