Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice

  1. Hongsheng Zhang
  2. Anupama Sathyamurthy
  3. Fang Liu
  4. Lei Li
  5. Lei Zhang
  6. Zhaoqi Dong
  7. Wanpeng Cui
  8. Xiangdong Sun
  9. Kai Zhao
  10. Hongsheng Wang
  11. Hsin-Yi Henry Ho
  12. Wen-Cheng Xiong
  13. Lin Mei  Is a corresponding author
  1. Case Western Reserve University, United States
  2. Augusta University, United States
  3. Harvard Medical School, United States

Abstract

Adult neurogenesis in the hippocampus may represent a form of plasticity in brain functions including mood, learning and memory. However, mechanisms underlying neural stem/progenitor cells (NSPCs) proliferation are not well understood. We found that Agrin, a factor critical for neuromuscular junction formation, is elevated in the hippocampus of mice that are stimulated by enriched environment (EE). Genetic deletion of the Agrn gene in excitatory neurons decreases NSPCs proliferation and increases depressing-like behavior. Low-density lipoprotein receptor-related protein 4 (Lrp4), a receptor for Agrin, is expressed in hippocampal NSPCs and its mutation blocked basal as well as EE-induced NSPCs proliferation and maturation of newborn neurons. Finally, we show that Lrp4 interacts with and activates receptor tyrosine kinase-like orphan receptor 2 (Ror2); and Ror2 mutation impairs NSPCs proliferation. Together, these observations identify a role of Agrin-Lrp4-Ror2 signaling for adult neurogenesis, uncovering previously unexpected functions of Agrin and Lrp4 in the brain.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Hongsheng Zhang

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8138-2108
  2. Anupama Sathyamurthy

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Fang Liu

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Lei Li

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Lei Zhang

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhaoqi Dong

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Wanpeng Cui

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xiangdong Sun

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Kai Zhao

    Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Hongsheng Wang

    Department of Neurosciences, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Hsin-Yi Henry Ho

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8780-7864
  12. Wen-Cheng Xiong

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9071-7598
  13. Lin Mei

    Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, United States
    For correspondence
    lin.mei@case.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5772-1229

Funding

National Institutes of Health (MH083317)

  • Lin Mei

National Institutes of Health (MH109280)

  • Lin Mei

National Institutes of Health (NS082007)

  • Lin Mei

National Institutes of Health (NS090083)

  • Lin Mei

National Institutes of Health (AG051510)

  • Lin Mei

National Institutes of Health (AG051773)

  • Wen-Cheng Xiong

National Institutes of Health (AG045781)

  • Wen-Cheng Xiong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures involving animals were in accordance with the National Institutes of Health Guide for the care and use of Laboratory Animals and approved by Institutional Animal Care and Use Committees of Augusta University (Protocol #: 2011-0393) and Case Western Reserve University (Protocol #: 2017-0115).

Copyright

© 2019, Zhang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,597
    views
  • 501
    downloads
  • 41
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hongsheng Zhang
  2. Anupama Sathyamurthy
  3. Fang Liu
  4. Lei Li
  5. Lei Zhang
  6. Zhaoqi Dong
  7. Wanpeng Cui
  8. Xiangdong Sun
  9. Kai Zhao
  10. Hongsheng Wang
  11. Hsin-Yi Henry Ho
  12. Wen-Cheng Xiong
  13. Lin Mei
(2019)
Agrin-Lrp4-Ror2 signaling regulates adult hippocampal neurogenesis in mice
eLife 8:e45303.
https://doi.org/10.7554/eLife.45303

Share this article

https://doi.org/10.7554/eLife.45303

Further reading

    1. Neuroscience
    Nishal Pradeepbhai Shah, AJ Phillips ... EJ Chichilnisky
    Tools and Resources

    Neural implants have the potential to restore lost sensory function by electrically evoking the complex naturalistic activity patterns of neural populations. However, it can be difficult to predict and control evoked neural responses to simultaneous multi-electrode stimulation due to nonlinearity of the responses. We present a solution to this problem and demonstrate its utility in the context of a bidirectional retinal implant for restoring vision. A dynamically optimized stimulation approach encodes incoming visual stimuli into a rapid, greedily chosen, temporally dithered and spatially multiplexed sequence of simple stimulation patterns. Stimuli are selected to optimize the reconstruction of the visual stimulus from the evoked responses. Temporal dithering exploits the slow time scales of downstream neural processing, and spatial multiplexing exploits the independence of responses generated by distant electrodes. The approach was evaluated using an experimental laboratory prototype of a retinal implant: large-scale, high-resolution multi-electrode stimulation and recording of macaque and rat retinal ganglion cells ex vivo. The dynamically optimized stimulation approach substantially enhanced performance compared to existing approaches based on static mapping between visual stimulus intensity and current amplitude. The modular framework enabled parallel extensions to naturalistic viewing conditions, incorporation of perceptual similarity measures, and efficient implementation for an implantable device. A direct closed-loop test of the approach supported its potential use in vision restoration.

    1. Neuroscience
    Chad Heer, Mark Sheffield
    Research Article

    Neuromodulatory inputs to the hippocampus play pivotal roles in modulating synaptic plasticity, shaping neuronal activity, and influencing learning and memory. Recently, it has been shown that the main sources of catecholamines to the hippocampus, ventral tegmental area (VTA) and locus coeruleus (LC), may have overlapping release of neurotransmitters and effects on the hippocampus. Therefore, to dissect the impacts of both VTA and LC circuits on hippocampal function, a thorough examination of how these pathways might differentially operate during behavior and learning is necessary. We therefore utilized two-photon microscopy to functionally image the activity of VTA and LC axons within the CA1 region of the dorsal hippocampus in head-fixed male mice navigating linear paths within virtual reality (VR) environments. We found that within familiar environments some VTA axons and the vast majority of LC axons showed a correlation with the animals’ running speed. However, as mice approached previously learned rewarded locations, a large majority of VTA axons exhibited a gradual ramping-up of activity, peaking at the reward location. In contrast, LC axons displayed a pre-movement signal predictive of the animal’s transition from immobility to movement. Interestingly, a marked divergence emerged following a switch from the familiar to novel VR environments. Many LC axons showed large increases in activity that remained elevated for over a minute, while the previously observed VTA axon ramping-to-reward dynamics disappeared during the same period. In conclusion, these findings highlight distinct roles of VTA and LC catecholaminergic inputs in the dorsal CA1 hippocampal region. These inputs encode unique information, with reward information in VTA inputs and novelty and kinematic information in LC inputs, likely contributing to differential modulation of hippocampal activity during behavior and learning.