1. Microbiology and Infectious Disease
Download icon

Single cell, super-resolution imaging reveals an acid pH-dependent conformational switch in SsrB regulates SPI-2

  1. Andrew Tze Fui Liew
  2. Yong Hwee Foo
  3. Yunfeng Gao
  4. Parisa Zangoui
  5. Moirangthem Kiran Singh
  6. Ranjit Gulvady
  7. Linda J Kenney  Is a corresponding author
  1. National University of Singapore, Singapore
  2. Institut Curie, France
  3. University of Illinois-Chicago, United States
Research Article
  • Cited 3
  • Views 1,458
  • Annotations
Cite this article as: eLife 2019;8:e45311 doi: 10.7554/eLife.45311

Abstract

After Salmonella is phagocytosed, it resides in an acidic vacuole. Its cytoplasm acidifies to pH 5.6; acidification activates pathogenicity island 2 (SPI-2). SPI-2 encodes a type three secretion system whose effectors modify the vacuole, driving endosomal tubulation. Using super-resolution imaging in single bacterial cells, we show that low pH induces expression of the SPI-2 SsrA/B signaling system. Single particle tracking, atomic force microscopy, and single molecule unzipping assays identified pH-dependent stimulation of DNA binding by SsrB. A so-called phosphomimetic form (D56E) was unable to bind to DNA in live cells. Acid-dependent DNA binding was not intrinsic to regulators, as PhoP and OmpR binding was not pH-sensitive. The low level of SPI-2 injectisomes observed in single cells is not due to fluctuating SsrB levels. This work highlights the surprising role that acid pH plays in virulence and intracellular lifestyles of Salmonella; modifying acid survival pathways represents a target for inhibiting Salmonella.

Article and author information

Author details

  1. Andrew Tze Fui Liew

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Yong Hwee Foo

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Yunfeng Gao

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Parisa Zangoui

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Moirangthem Kiran Singh

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Ranjit Gulvady

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Linda J Kenney

    Department of Microbiology and Immunology, University of Illinois-Chicago, Chicago, United States
    For correspondence
    kenneyl@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8658-0717

Funding

National Institutes of Health (AI-123640)

  • Linda J Kenney

Veteran's Affairs (IOBX-000372)

  • Linda J Kenney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sophie Helaine, Imperial College London, United Kingdom

Publication history

  1. Received: January 18, 2019
  2. Accepted: April 28, 2019
  3. Accepted Manuscript published: April 29, 2019 (version 1)
  4. Version of Record published: June 10, 2019 (version 2)

Copyright

© 2019, Liew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,458
    Page views
  • 339
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Yingying Fu et al.
    Research Article

    Although many high-risk mucosal and cutaneous human papillomaviruses (HPVs) theoretically have the potential to synthesize L1 isoforms differing in length, previous seroepidemiological studies only focused on the short L1 variants, co-assembling with L2 to infectious virions. Using the multimammate mouse Mastomys coucha as preclinical model, this is the first study demonstrating seroconversion against different L1 isoforms during the natural course of papillomavirus infection. Intriguingly, positivity with the cutaneous MnPV was accompanied by a strong seroresponse against a longer L1 isoform, but to our surprise, the raised antibodies were non-neutralizing. Only after a delay of around 4 months, protecting antibodies against the short L1 appeared, enabling the virus to successfully establish an infection. This argues for a novel humoral immune escape mechanism that may also have important implications on the interpretation of epidemiological data in terms of seropositivity and protection of PV infections in general.

    1. Microbiology and Infectious Disease
    Ashima Bhaskar et al.
    Research Article Updated

    Mycobacterium tuberculosis (Mtb) employs plethora of mechanisms to hijack the host defence machinery for its successful survival, proliferation and persistence. Here, we show that Mtb upregulates one of the key epigenetic modulators, NAD+ dependent histone deacetylase Sirtuin 2 (SIRT2), which upon infection translocate to the nucleus and deacetylates histone H3K18, thus modulating the host transcriptome leading to enhanced macrophage activation. Furthermore, in Mtb specific T cells, SIRT2 deacetylates NFκB-p65 at K310 to modulate T helper cell differentiation. Pharmacological inhibition of SIRT2 restricts the intracellular growth of both drug-sensitive and resistant strains of Mtb and enhances the efficacy of front line anti-TB drug Isoniazid in the murine model of infection. SIRT2 inhibitor-treated mice display reduced bacillary load, decreased disease pathology and increased Mtb-specific protective immune responses. Overall, this study provides a link between Mtb infection, epigenetics and host immune response, which can be exploited to achieve therapeutic benefits.