1. Microbiology and Infectious Disease
Download icon

Single cell, super-resolution imaging reveals an acid pH-dependent conformational switch in SsrB regulates SPI-2

  1. Andrew Tze Fui Liew
  2. Yong Hwee Foo
  3. Yunfeng Gao
  4. Parisa Zangoui
  5. Moirangthem Kiran Singh
  6. Ranjit Gulvady
  7. Linda J Kenney  Is a corresponding author
  1. National University of Singapore, Singapore
  2. Institut Curie, France
  3. University of Illinois-Chicago, United States
Research Article
  • Cited 2
  • Views 1,135
  • Annotations
Cite this article as: eLife 2019;8:e45311 doi: 10.7554/eLife.45311

Abstract

After Salmonella is phagocytosed, it resides in an acidic vacuole. Its cytoplasm acidifies to pH 5.6; acidification activates pathogenicity island 2 (SPI-2). SPI-2 encodes a type three secretion system whose effectors modify the vacuole, driving endosomal tubulation. Using super-resolution imaging in single bacterial cells, we show that low pH induces expression of the SPI-2 SsrA/B signaling system. Single particle tracking, atomic force microscopy, and single molecule unzipping assays identified pH-dependent stimulation of DNA binding by SsrB. A so-called phosphomimetic form (D56E) was unable to bind to DNA in live cells. Acid-dependent DNA binding was not intrinsic to regulators, as PhoP and OmpR binding was not pH-sensitive. The low level of SPI-2 injectisomes observed in single cells is not due to fluctuating SsrB levels. This work highlights the surprising role that acid pH plays in virulence and intracellular lifestyles of Salmonella; modifying acid survival pathways represents a target for inhibiting Salmonella.

Article and author information

Author details

  1. Andrew Tze Fui Liew

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Yong Hwee Foo

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Yunfeng Gao

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Parisa Zangoui

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Moirangthem Kiran Singh

    Mechanobiology Institute, National University of Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Ranjit Gulvady

    Institut Curie, Paris, France
    Competing interests
    The authors declare that no competing interests exist.
  7. Linda J Kenney

    Department of Microbiology and Immunology, University of Illinois-Chicago, Chicago, United States
    For correspondence
    kenneyl@uic.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8658-0717

Funding

National Institutes of Health (AI-123640)

  • Linda J Kenney

Veteran's Affairs (IOBX-000372)

  • Linda J Kenney

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sophie Helaine, Imperial College London, United Kingdom

Publication history

  1. Received: January 18, 2019
  2. Accepted: April 28, 2019
  3. Accepted Manuscript published: April 29, 2019 (version 1)
  4. Version of Record published: June 10, 2019 (version 2)

Copyright

© 2019, Liew et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,135
    Page views
  • 293
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Microbiology and Infectious Disease
    Guillaume Witz et al.
    Research Article
    1. Cell Biology
    2. Microbiology and Infectious Disease
    Simon Imhof et al.
    Research Article