Abstract

Identification of pro-regenerative approaches to improve tendon healing is critically important as the fibrotic healing response impairs physical function. In the present study we tested the hypothesis that S100a4 haploinsufficiency or inhibition of S100a4 signaling improves tendon function following acute injury and surgical repair in a murine model. We demonstrate that S100a4 drives fibrotic tendon healing primarily through a cell non-autonomous process, with S100a4 haploinsufficiency promoting regenerative tendon healing. Moreover, inhibition of S100a4 signaling via antagonism of its putative receptor, RAGE, also decreases scar formation. Mechanistically, S100a4 haploinsufficiency decreases myofibroblast and macrophage content at the site of injury, with both cell populations being key drivers of fibrotic progression. Moreover, S100a4-lineage cells become α-SMA+ myofibroblasts, via loss of S100a4 expression. Using a combination of genetic mouse models, small molecule inhibitors and in vitro studies we have defined S100a4 as a novel, promising therapeutic candidate to improve tendon function after acute injury.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jessica E Ackerman

    Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Anne EC Nichols

    Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Valentina Studentsova

    Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Katherine T Best

    Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Emma Knapp

    Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Alayna E Loiselle

    Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, United States
    For correspondence
    alayna_loiselle@urmc.rochester.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7548-6653

Funding

National Institute of Arthritis and Musculoskeletal and Skin Diseases (K01AR068386)

  • Alayna E Loiselle

National Institute of Arthritis and Musculoskeletal and Skin Diseases (R01AR073169)

  • Alayna E Loiselle

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal studies were approved by the University of Rochester Committee for Animal Resources (Protocol 2014-004).

Copyright

© 2019, Ackerman et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,439
    views
  • 290
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jessica E Ackerman
  2. Anne EC Nichols
  3. Valentina Studentsova
  4. Katherine T Best
  5. Emma Knapp
  6. Alayna E Loiselle
(2019)
Cell non-autonomous functions of S100a4 drive fibrotic tendon healing
eLife 8:e45342.
https://doi.org/10.7554/eLife.45342

Share this article

https://doi.org/10.7554/eLife.45342

Further reading

    1. Stem Cells and Regenerative Medicine
    Corentin Bernou, Marc-André Mouthon ... François Dominique Boussin
    Research Article

    The lateral wall of the mouse subventricular zone harbors neural stem cells (NSC, B cells) which generate proliferating transient-amplifying progenitors (TAP, C cells) that ultimately give rise to neuroblasts (NB, A cells). Molecular profiling at the single-cell level struggles to distinguish these different cell types. Here, we combined transcriptome analyses of FACS-sorted cells and single-cell RNAseq to demonstrate the existence of an abundant, clonogenic and multipotent population of immature neuroblasts (iNB cells) at the transition between TAP and migrating NB (mNB). iNB are reversibly engaged in neuronal differentiation. Indeed, they keep molecular features of both undifferentiated progenitors, plasticity and unexpected regenerative properties. Strikingly, they undergo important progressive molecular switches, including changes in the expression of splicing regulators leading to their differentiation in mNB subdividing them into two subtypes, iNB1 and iNB2. Due to their plastic properties, iNB could represent a new target for regenerative therapy of brain damage.

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.