Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis

Abstract

We discovered that Enterococcus faecium (E. faecium), a ubiquitous commensal bacterium, and its secreted peptidoglycan hydrolase (SagA) were sufficient to enhance intestinal barrier function and pathogen tolerance, but the precise biochemical mechanism was unknown. Here we show E. faecium has unique peptidoglycan composition and remodeling activity through SagA, which generates smaller muropeptides that more effectively activates nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mammalian cells. Our structural and biochemical studies show that SagA is a NlpC/p60-endopeptidase that preferentially hydrolyzes crosslinked Lys-type peptidoglycan fragments. SagA secretion and NlpC/p60-endopeptidase activity was required for enhancing probiotic bacteria activity against Clostridium difficile pathogenesis in vivo. Our results demonstrate that the peptidoglycan composition and hydrolase activity of specific microbiota species can activate host immune pathways and enhance tolerance to pathogens.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.Diffraction data have been deposited in PDB under the accession code 6B8C.

The following data sets were generated

Article and author information

Author details

  1. Byungchul Kim

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yen-Chih Wang

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Charles W Hespen

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Juliel Espinosa

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2104-5331
  5. Jeanne Salje

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Kavita J Rangan

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Deena A Oren

    Structural Biology Resource Center, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jin Young Kang

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Virginia A Pedicord

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Howard C Hang

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    For correspondence
    hhang@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4053-5547

Funding

National Institute of General Medical Sciences (R01GM103593)

  • Byungchul Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,300
    views
  • 962
    downloads
  • 83
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Byungchul Kim
  2. Yen-Chih Wang
  3. Charles W Hespen
  4. Juliel Espinosa
  5. Jeanne Salje
  6. Kavita J Rangan
  7. Deena A Oren
  8. Jin Young Kang
  9. Virginia A Pedicord
  10. Howard C Hang
(2019)
Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis
eLife 8:e45343.
https://doi.org/10.7554/eLife.45343

Share this article

https://doi.org/10.7554/eLife.45343

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.