1. Biochemistry and Chemical Biology
Download icon

Enterococcus faecium secreted antigen A generates muropeptides to enhance host immunity and limit bacterial pathogenesis

  1. Byungchul Kim
  2. Yen-Chih Wang
  3. Charles W Hespen
  4. Juliel Espinosa
  5. Jeanne Salje
  6. Kavita J Rangan
  7. Deena A Oren
  8. Jin Young Kang
  9. Virginia A Pedicord
  10. Howard C Hang  Is a corresponding author
  1. The Rockefeller University, United States
  2. University of Oxford, United Kingdom
Research Article
  • Cited 13
  • Views 2,317
  • Annotations
Cite this article as: eLife 2019;8:e45343 doi: 10.7554/eLife.45343
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

We discovered that Enterococcus faecium (E. faecium), a ubiquitous commensal bacterium, and its secreted peptidoglycan hydrolase (SagA) were sufficient to enhance intestinal barrier function and pathogen tolerance, but the precise biochemical mechanism was unknown. Here we show E. faecium has unique peptidoglycan composition and remodeling activity through SagA, which generates smaller muropeptides that more effectively activates nucleotide-binding oligomerization domain-containing protein 2 (NOD2) in mammalian cells. Our structural and biochemical studies show that SagA is a NlpC/p60-endopeptidase that preferentially hydrolyzes crosslinked Lys-type peptidoglycan fragments. SagA secretion and NlpC/p60-endopeptidase activity was required for enhancing probiotic bacteria activity against Clostridium difficile pathogenesis in vivo. Our results demonstrate that the peptidoglycan composition and hydrolase activity of specific microbiota species can activate host immune pathways and enhance tolerance to pathogens.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.Diffraction data have been deposited in PDB under the accession code 6B8C.

The following data sets were generated

Article and author information

Author details

  1. Byungchul Kim

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Yen-Chih Wang

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Charles W Hespen

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Juliel Espinosa

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2104-5331
  5. Jeanne Salje

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Kavita J Rangan

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Deena A Oren

    Structural Biology Resource Center, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Jin Young Kang

    Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Virginia A Pedicord

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Howard C Hang

    Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, United States
    For correspondence
    hhang@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4053-5547

Funding

National Institute of General Medical Sciences (R01GM103593)

  • Byungchul Kim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kim Orth, HHMI/University of Texas Southwestern Medical Center, United States

Publication history

  1. Received: January 18, 2019
  2. Accepted: April 4, 2019
  3. Accepted Manuscript published: April 10, 2019 (version 1)
  4. Version of Record published: April 25, 2019 (version 2)

Copyright

© 2019, Kim et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,317
    Page views
  • 449
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Wan Hua Li et al.
    Research Article

    SARM1 regulates axonal degeneration through its NAD-metabolizing activity and is a drug target for neurodegenerative disorders. We designed and synthesized fluorescent conjugates of styryl derivative with pyridine to serve as substrates of SARM1, which exhibited large red-shifts after conversion. With the conjugates, SARM1 activation was visualized in live cells following elevation of endogenous NMN or treatment with a cell-permeant NMN-analog. In neurons, imaging documented mouse SARM1 activation preceded vincristine-induced axonal degeneration by hours. Library screening identified a derivative of nisoldipine as a covalent inhibitor of SARM1 that reacted with the cysteines, especially Cys311 in its ARM domain and blocked its NMN-activation, protecting axons from degeneration. The Cryo-EM structure showed that SARM1 was locked into an inactive conformation by the inhibitor, uncovering a potential neuroprotective mechanism of dihydropyridines.

    1. Biochemistry and Chemical Biology
    Renata O Pereira et al.
    Research Article

    Adrenergic stimulation of brown adipocytes alters mitochondrial dynamics, including the mitochondrial fusion protein optic atrophy 1 (OPA1). However, direct mechanisms linking OPA1 to brown adipose tissue (BAT) physiology are incompletely understood. We utilized a mouse model of selective OPA1 deletion in BAT (OPA1 BAT KO) to investigate the role of OPA1 in thermogenesis. OPA1 is required for cold-induced activation of thermogenic genes in BAT. Unexpectedly, OPA1 deficiency induced fibroblast growth factor 21 (FGF21) as a BATokine in an activating transcription factor 4 (ATF4)-dependent manner. BAT-derived FGF21 mediates an adaptive response, by inducing browning of white adipose tissue, increasing resting metabolic rates, and improving thermoregulation. However, mechanisms independent of FGF21, but dependent on ATF4 induction, promote resistance to diet-induced obesity in OPA1 BAT KO mice. These findings uncover a homeostatic mechanism of BAT-mediated metabolic protection governed in part by an ATF4-FGF21 axis, that is activated independently of BAT thermogenic function.