Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate

  1. Dasan Mary Cibi
  2. Masum M Mia
  3. Shamini Guna Shekeran
  4. Lim Sze Yun
  5. Reddemma Sandireddy
  6. Priyanka Gupta
  7. Monalisa Hota
  8. Lei Sun
  9. Sujoy Ghosh
  10. Manvendra K Singh  Is a corresponding author
  1. Duke-NUS Medical School Singapore, Singapore
  2. National Heart Center Singapore, Singapore

Abstract

Alternative splicing (AS) creates proteomic diversity from a limited size genome by generating numerous transcripts from a single protein-coding gene. Tissue-specific regulators of AS are essential components of the gene regulatory network, required for normal cellular function, tissue patterning, and embryonic development. However, their cell-autonomous function in neural crest development has not been explored. Here, we demonstrate that splicing factor Rbfox2 is expressed in the neural crest cells (NCCs), and deletion of Rbfox2 in NCCs leads to cleft palate and defects in craniofacial bone development. RNA-Seq analysis revealed that Rbfox2 regulates splicing and expression of numerous genes essential for neural crest/craniofacial development. We demonstrate that Rbfox2-TGF-β-Tak1 signaling axis is deregulated by Rbfox2 deletion. Furthermore, restoration of TGF-β signaling by Tak1 overexpression can rescue the proliferation defect seen in Rbfox2 mutants. We also identified a positive feedback loop in which TGF-β signaling promotes expression of Rbfox2 in NCCs.

Data availability

RNA Sequencing data have been deposited in GEO under accession code GSE127245

The following data sets were generated

Article and author information

Author details

  1. Dasan Mary Cibi

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Masum M Mia

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Shamini Guna Shekeran

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Lim Sze Yun

    National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Reddemma Sandireddy

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Priyanka Gupta

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Monalisa Hota

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Lei Sun

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3937-941X
  9. Sujoy Ghosh

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Manvendra K Singh

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    For correspondence
    manvendra.singh@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2884-0074

Funding

National Research Foundation Singapore (NRF-NRFF2016-01)

  • Manvendra K Singh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The Institutional Animal Care and Use Committee (IACUC) at SingHealth and Duke-NUS Medical School approved all the animal experiments (IACUC protocol number 2014/SHS/0988 and 2018/SHS/1415).

Copyright

© 2019, Cibi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,986
    views
  • 429
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dasan Mary Cibi
  2. Masum M Mia
  3. Shamini Guna Shekeran
  4. Lim Sze Yun
  5. Reddemma Sandireddy
  6. Priyanka Gupta
  7. Monalisa Hota
  8. Lei Sun
  9. Sujoy Ghosh
  10. Manvendra K Singh
(2019)
Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate
eLife 8:e45418.
https://doi.org/10.7554/eLife.45418

Share this article

https://doi.org/10.7554/eLife.45418

Further reading

    1. Cell Biology
    2. Developmental Biology
    Sofía Suárez Freire, Sebastián Perez-Pandolfo ... Mariana Melani
    Research Article

    Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.

    1. Cell Biology
    2. Developmental Biology
    Heungjin Ryu, Kibum Nam ... Jung-Hoon Park
    Research Article

    In most murine species, spermatozoa exhibit a falciform apical hook at the head end. The function of the sperm hook is not yet clearly understood. In this study, we investigate the role of the sperm hook in the migration of spermatozoa through the female reproductive tract in Mus musculus (C57BL/6), using a deep tissue imaging custom-built two-photon microscope. Through live reproductive tract imaging, we found evidence indicating that the sperm hook aids in the attachment of spermatozoa to the epithelium and facilitates interactions between spermatozoa and the epithelium during migration in the uterus and oviduct. We also observed synchronized sperm beating, which resulted from the spontaneous unidirectional rearrangement of spermatozoa in the uterus. Based on live imaging of spermatozoa-epithelium interaction dynamics, we propose that the sperm hook plays a crucial role in successful migration through the female reproductive tract by providing anchor-like mechanical support and facilitating interactions between spermatozoa and the female reproductive tract in the house mouse.