1. Developmental Biology
Download icon

Neural crest-specific deletion of Rbfox2 in mice leads to craniofacial abnormalities including cleft palate

  1. Dasan Mary Cibi
  2. Masum M Mia
  3. Shamini Guna Shekeran
  4. Lim Sze Yun
  5. Reddemma Sandireddy
  6. Priyanka Gupta
  7. Monalisa Hota
  8. Lei Sun
  9. Sujoy Ghosh
  10. Manvendra K Singh  Is a corresponding author
  1. Duke-NUS Medical School Singapore, Singapore
  2. National Heart Center Singapore, Singapore
Research Article
  • Cited 4
  • Views 1,987
  • Annotations
Cite this article as: eLife 2019;8:e45418 doi: 10.7554/eLife.45418

Abstract

Alternative splicing (AS) creates proteomic diversity from a limited size genome by generating numerous transcripts from a single protein-coding gene. Tissue-specific regulators of AS are essential components of the gene regulatory network, required for normal cellular function, tissue patterning, and embryonic development. However, their cell-autonomous function in neural crest development has not been explored. Here, we demonstrate that splicing factor Rbfox2 is expressed in the neural crest cells (NCCs), and deletion of Rbfox2 in NCCs leads to cleft palate and defects in craniofacial bone development. RNA-Seq analysis revealed that Rbfox2 regulates splicing and expression of numerous genes essential for neural crest/craniofacial development. We demonstrate that Rbfox2-TGF-β-Tak1 signaling axis is deregulated by Rbfox2 deletion. Furthermore, restoration of TGF-β signaling by Tak1 overexpression can rescue the proliferation defect seen in Rbfox2 mutants. We also identified a positive feedback loop in which TGF-β signaling promotes expression of Rbfox2 in NCCs.

Article and author information

Author details

  1. Dasan Mary Cibi

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  2. Masum M Mia

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  3. Shamini Guna Shekeran

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  4. Lim Sze Yun

    National Heart Research Institute Singapore, National Heart Center Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Reddemma Sandireddy

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  6. Priyanka Gupta

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  7. Monalisa Hota

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  8. Lei Sun

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3937-941X
  9. Sujoy Ghosh

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  10. Manvendra K Singh

    Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School Singapore, Singapore, Singapore
    For correspondence
    manvendra.singh@duke-nus.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2884-0074

Funding

National Research Foundation Singapore (NRF-NRFF2016-01)

  • Manvendra K Singh

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The Institutional Animal Care and Use Committee (IACUC) at SingHealth and Duke-NUS Medical School approved all the animal experiments (IACUC protocol number 2014/SHS/0988 and 2018/SHS/1415).

Reviewing Editor

  1. Margaret Buckingham, CNRS UMR 3738, Institut Pasteur, France

Publication history

  1. Received: January 23, 2019
  2. Accepted: June 25, 2019
  3. Accepted Manuscript published: June 26, 2019 (version 1)
  4. Version of Record published: July 29, 2019 (version 2)

Copyright

© 2019, Cibi et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,987
    Page views
  • 312
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    Feng Wang et al.
    Research Article

    The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.

    1. Cell Biology
    2. Developmental Biology
    Radek Jankele et al.
    Research Article

    Asymmetric divisions that yield daughter cells of different sizes are frequent during early embryogenesis, but the importance of such a physical difference for successful development remains poorly understood. Here, we investigated this question using the first division of C. elegans embryos, which yields a large AB cell and a small P1 cell. We equalized AB and P1 sizes using acute genetic inactivation or optogenetic manipulation of the spindle positioning protein LIN-5. We uncovered that only some embryos tolerated equalization, and that there was a size asymmetry threshold for viability. Cell lineage analysis of equalized embryos revealed an array of defects, including faster cell cycle progression in P1 descendants, as well as defects in cell positioning, division orientation and cell fate. Moreover, equalized embryos were more susceptible to external compression. Overall, we conclude that unequal first cleavage is essential for invariably successful embryonic development of C. elegans.